Maitre_yoda_models/yoda12.pbtxt

28182 lines
468 KiB
Plaintext

node {
name: "net_input"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: -1
}
dim {
size: 29
}
dim {
size: 13
}
}
}
}
}
node {
name: "net/random_uniform/shape"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\r\000\000\000<\000\000\000"
}
}
}
}
node {
name: "net/random_uniform/min"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: -0.2866911
}
}
}
}
node {
name: "net/random_uniform/max"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2866911
}
}
}
}
node {
name: "net/random_uniform/RandomUniform"
op: "RandomUniform"
input: "net/random_uniform/shape"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "seed"
value {
i: 87654321
}
}
attr {
key: "seed2"
value {
i: 8079950
}
}
}
node {
name: "net/random_uniform/sub"
op: "Sub"
input: "net/random_uniform/max"
input: "net/random_uniform/min"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/random_uniform/mul"
op: "Mul"
input: "net/random_uniform/RandomUniform"
input: "net/random_uniform/sub"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/random_uniform"
op: "Add"
input: "net/random_uniform/mul"
input: "net/random_uniform/min"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/kernel"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 13
}
dim {
size: 60
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "net/kernel/Assign"
op: "Assign"
input: "net/kernel"
input: "net/random_uniform"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/kernel"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "net/kernel/read"
op: "Identity"
input: "net/kernel"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/kernel"
}
}
}
}
node {
name: "net/recurrent_kernel/initial_value"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
dim {
size: 60
}
}
tensor_content: "\311\346\334<\002\375I=.9\000>B\375i=\323p}\275\326\276\201\275\037\234\252\276c\320\026=%dS<0 .<\241a\355=j\250S<\031NZ=a\026\350\275,\206\371=5R \275@\376i<\006,\010>\257,\314=\"$\227\275\350\254\301=\016\005z>\212\315\236\275\307i\344\275\255\326\014>k\301X\274\266\331==M\242\277=\020~\246\275\361\257\253>\222\345\\>\204\271\252=Dt\n>B\263\220\2760\277\216\275 /_=\002\273a>1\\S<-+\222<JH->\205\016\315=\260\200L>\3033?>>#\024\274\3309s=R\320\204>\322\265\242=\273\034\337\275t?b=m\230\315\275\211\235\035>F\310b=xjD\274\317\235@=\023T/>3\202\314\275\\\356\240\275]\354\243\275h\034<\276\255}r\275\321\033\307=N\344h\275]d\r=\315\235y\2760x]\275\205\346\255<\257\331v>?[[=\345\375\004>\367(;\276<\236q<\205X:=\275\353A=\341\034\002\2760*x<\200O\312=&\340\317=yU6=i\035l\276vo\213<\302\007F=\222P\346=\365\377\207\276O\247\203\275\201#\330=\370\245i\275\026\033\264>4\014\201\275|\222\362<P\033\250<\236\341T\276\"\372\204\274$\204$=G\020\313=%\313\235\275\367\203|>\373s\027<R\371\026\276\242=l=Z\326\362\275\204`\003\276\233\226\334=\275\232J\275\311\273/\274\006v_\275\303<\"\276t\373o>\337\346\253\275\031\352i\275\261\332\007\276\326p\242;\3757\026\276\035(6>L\333+\276\031b\036>\027[\n\276\211\242\215\275M\004\375\275\230*\024\276\250)\000\276\014q\246\275\220\330 >\376S\032\276$\031\356\275\326\370\252=\272v\\\276\037T\217=\217s>=\256\301\201>\257\261\232\2757\036\276\275\275\270\201\267c\007\022\275.\025e=-\226\272=\264&\373\275\214\271G\276\302a\246\275\365\364>\276P\354\307=\232?4\276l[9\275<F\036\275>\005\300=\351R\177=\340\357\361\274heA<D\000\216\2751\253\034<<\242\033\275\344\"Y\274\334\337\010>\325\255\032=\376\300\217=\321\255\025>\353\225\004\276\2767\272\275\270\221@\276\001\r\362<\347\376\027\275\263\212[>q!\214=\216\022\020>\223\024:=\220\032\312\274>,\252=X\320\226=\227np\275\340v\321=\354I\370=1\352$<\020\374\247>\310\234\203=q\003\245>\3019\244=[\027\345\275\315|\261\276\330\003C\276E\202\276=\260\331\021<\0378z=\360@[=\320/\206={F\306=\326?\260=\002\371\033>\0372\256=\242\032\235\275\024\323\327\275\265kU\2761\267\206\274\027\316\030\275\017?&>\273v\325\274=\263V\276\034l\213>L\201\250=\246\207X\276Z\346\003\276\320\263\275=\205\337\254<F3s\276\242{\213\275\210\213\373\275;6\223\275PC\273\275\002\246W=\r\323\244=\354\245=\276\236\345B<\236e\024>\024\007\331=~\254!\276K[1\275\325\240\024\276f=\">\253\020\003\274\336\036\342\275T\300\227\275\200S$>J\214M\275q\212\301\272\023\013\035>\351$@>\325Q^\276\016\276=>\204Q\'>\353\254\356\275zL\337=\267\350\030>\262\\\t>\202\210Z;6K\177\275#\245 >9\373y\276\247)\273=\207\304\210=FF\017\276\245c\036\273\2071\020>\364t\264\276\240\t\356<\223p\\\275+\321\027\276,\010\263\275\232\r\325=\242\334\354=\332Y\211\274\202\2754\276\307b\000>\234\223>>$\r\313\275\265\226#=\177\221\022\276\200\262\032\276w\272\314=\265p\030\275:\211\027>b\202\250\275F\2214=\2313\014=\2548#\276\365\014\277\275\344\r\013\276\323=\207\275[\316\277>\006\344\305\275\317\266\314=\221\031\200=t\267\223\275\202\301\034>\201\202(\276#\362\004>\014\332\236=q\002\235<D\332e\275\014\250E=3\354\264\275\266\232\206\275#0i\275M\215\372\275\223\300S>\367\010b;f\336y<\342\177\234>\355\267\234\273\024/>\275N\0145\275\025{\024>\004q\000\276\217\343\251\275\342\326\000>\037\177l=\356\371\314=O\226\211\274\240\237\372\274H\'\323=\321d\215\276h\002\3728\236\034,\275R\034\t\275 p\352\274\323P\003<\3071\246\276g[\030>J1\356=K;\235\275\203)\363\275\220\013\030>\216\267\301=:k\220=\274\320 \2765\354{\276\334\376\347\275\026V\344;RG+>1\371\324=\030\333\336:^\226 \275\007WM\276a\026\216\276\005Q\345\275\330\306K<\t3\332=\277z\025\276\327?o\275\305n\320=\216)\235=|\231\226\276y\244\272=\302&\245=u\374F=\327\211\016>\017\321\243\274]\316\332=g\313\005\276\327g\236>\371\334\372\274\255A\032\275\246\343\362\274\023^\267<\262\307\302\275\225\3415=\311\227\256\275\256\005\t\276\367\242/\276^{\017=\311\025\333<\303\0036>Lha\275\372\213\304;\221\354\257\275+\207\237<#\300\374=@\374x\275>\256\215=\215\311\372<\234\323g>Z\253\376<\314.R\276\2226\237\275r\242\256=yF\260\275\000\256\352=~\243\000\276b!\205\275\211M#\276\360\376\"\276\315\335S\275G\326\311=+\273\332\275\006;\014>@\273^\275i\177\350<\004\373\003\276MM\325\275\275\256\307;\275mD\275\233\370\262\275p\374\004>,J!=\334\354\333\275M\\\215>9&\271=r\372\261=\246;6\276\033R\227>`\313\017\275\025\300\207\276yd\216<l\320\024\275\302W6\276\211\317\332=\303\230\270\275\021\232\302<\275r\r>]/\302\275\242\353:\276\032P>\276\267\271\001=\027\275f\276\006\240w\275\022+3=d\303\204\2764\302\203>\245\004$=\304F\233<\205\207\017>\244i\213=x^\023>X\337j\275}@\301\275\032\014\351\275\263\3714\275\030~ \275N\276<<X\275\373\275\223E\031\276xA\032\275\210\247W\276\337\362{=\r\273\031\276\237[\n\276\252\341\025<\275\232\356\275\235\215\016\276\305\323\022=\360A\245\275\351\225X;jJ\315\275\210\361\230\275\376>\250\273r\264\225=\3436\316\274e\020\212\275\250\032\257\274[\231\215>\226\342\345\274\271RP\276\323\021\214\275H2D\270}?\002\274\357%+\276PQ9>X\020\036\2764\374N\276t\3305\276\321<>=\350+\021\276)$\230\273\310\257o;W\363\207\276\013\374C=\221e\032\2767\217*={%\220\273-p\345\275^\275\030>ed\006>\332\004\246>bC.\276\200\353\204=\361~\310\275\260\\K>\277\355\234<F\244\303\274\261?\036\276\211\230\251\2745J-\276d\236\376\275\262\033\203\275o\347K>\276\034\034\275\242\326]>!\3266>a\337\277\275j=n=\257\t\376<\325Wy=*\367H\276\251?\212>\"\241v>f\324\305\275\n\237\226\276\327s,\2758k\023\276\030\332\225=q\317\\\276\261\355d>|+\243\274&\211\373;\230\331\337\274\366d\317<g\346n\276\te\326=\303\377\361=\\\314\227<I>\255\275G\335\231>\275\323\277\275\004%.=\017dc\275#\033W>\331\207\264=_\016\001\275\345\217\366=Cp\263\274\354)A\276\244T\227=\223\204\311\273Z)\343\275/\001:\276\366\370t;\013\000U\275\027\260\025\276\352*\002=>\177\027=\263\253\226\275\rwc>)\354!>\031W\242\275;\0228\275\377\003\364=\256\311\205=\2157%>-\357\327=\231\014\027\276P\237\373\275\244\004\\=\357\2511=\314\304\301=\2325\021\275\313\241P=\2058\351\275\004Jc\275\300\026\240=\302\342{=\231\\\024\276\227\302\001>\372\343\365=\371\276\273\275!y\211\2767{\313\275Zi/\275|=>\276K\021\317=\266Q\340\275\234\276\343=\347;\310\274\274\352\252>\263(/>\325\240\003\276\035\311\271<!\201m\275Of\003>\\\022\253=\000\374\322=\003\262\207\276&\237=>\223n\023>\004\354#\276\223\314\274\274\307Z\035\275PfZ=[\373\010>a\016T\276\333\212\244\275\312u[=\262\345w\275\346\023S\276\241}\223=Y%p\274a\212\033\275B\314\320\273\301\211\n\274\261>\341=\376\276\000;\310\224\323\2752\335\032>\010\377\177=<#X>\375Uw\275\223:1=+\331\'>\207\310\252\274\265\362\016\276[\365\000>\303\207\210=\264\353\003=\n\232=>\341\211t\274\316%\355=(\305\033\273X\222\216\276\227\024\364=\302\331}\275\245\353\330<\214\242e\276\334i\364\274\210\355\357\274\252\")=\327\"\324<\224\024\000\275\241.\035=\307\017\224\275\311d\260=\013,R\274\327_\036>c\321\305\274\220\233\206>}\361\215=z\'>>\372\220\232\276\220\364\367\275}\273a>9\251\004>>=R>\223N\t>\323\313\211\275\r\266\265\276\264\303J>.\223\212\275\330\031+\276g\311,=C\310\032\274\257\370\203=\354b\351=\206q\340\275fS\224\275\032\207\275<\353\355\351\273\366\371\363; w\331\274\317\316\300=\202*\032=/C!>\3026\204\276^\376\253=\220N\232\275,S\344<H/\227<\254`8<\317 6\275\231\216\023\276$>\001\276]\025{=\237\020\243\275\251\373\322\275\223b\276=\256\233.>C\377*\275\270\235\357=q\302-\276\267\322\236=D\344\336\275x\262L\276)\221$\275\314\333t\275lk\375=ZCT>x\274d=\372it\276\355M\344<\215N,>\023(\017>\301?\311=\306\315w;\234T\006\276\216\366:>\231\303-:\374mo>\242~\217\276\016\257C\275\306ZK>\261\025U>j\205#>F\306\013\276\034\334s>}\272\326=\265\364T>t\363\013>4[M\276\230\212\217\275e\260)<\213\264#=\345T\210\273DHE>{|6\276\320\270e\274\367\331\370\275\253\311\337<\232\210\366\275dV\246=!\307\337;\240\272E<tS\010\276Q\357\'\275\263\277\233\275\363-N\275]\014\234<\345\316V\276_&\010>\246\333\242=\n#\354=\311+\340\270R\375\217=\232L\313\275d\010\350\274Zu(\276\240\025n=\034\310R>\267\320\302={\221N\275KR<\275\004\377]\275\230\213\370\275\3127\007\276@\262>>\367\354=\274\013\235\217\275\371\265\023>\330(?>lo\200=\007\246\"\276=KC>;\374\347=\260\335\331\273\227]\321=\260\302e\276x\351\034=\020\031=>\347\377\002\276\206\331!\2764\200z>@\314\024>\377\002\301\275\235\0216\274\002\351\021;\025H\243\275\r\260\216\274z\376\014=\252\270\345=\331\021\201\275\001\tu=z\025`>\324\350\357\275\000\224e\275\270+V>!.\231=5\362\277=}\324\310\275\347\250\346\275\223o\307\274\305c=\276ty\354\274\244\252\260\274#dx\275\\\337O\275\006s:\276H\334\033>,v+\276\037\3706=\0263\312\275I\324\274=\207\273\000>`H\026\276\344H\037>\345\257\010\276\353\357\311<\313\004\314=)I\352\274\312\261B=\366\247\033>\341\266\227\274\3623\243\272\207!\235>U\004\226\275OU8\275\\\302\240>\236@\"=\254K\243\274\305L\217<\300Z\231\275\276zr>\200\254\027=<\3314\276E\034\241\275\243\247\035>\027\022>>\266\360\376=\362\261t=\r+s\275~2\274<\3253o\276\260\272w\275u\34108k?\234<o\342>\276\034\0044\275\252\256\275<[rB=W\316\006=\035d\221\276o\021\252=\021\273b\276p\276A>o+\245\275;\207\261<S\201\342\274\372\324v=\315\323:\2757\227m=3\263\241\275\337\244<\273\203\300\200\276\226\005-=L\201\031=r\013\031\2765-=\276\224\312\322\275u\0009\274S\023\326\275{j\356\2758\3349>{Ye>-\354\356<\264\255i\275.\332K\276\013U\031=\241\217\024>d\324\310\275\223\256\376\275d &\275\3222\274\275\337\304\363;|\202\027>\364\330\211\276\0300y>Lkz;O\256\'\276\207N\313\273q\274\245>N\210\217>/\327&\275(\334\345<\205\0224>1\262\276\275s\3721\276\270\027!\275\246\234%>\274<#\276L\031\023\275\312J\245=?5\220\275\024\254[=+\364}=\372A\005>\263\236\004\275/\263\007\276\264\234\371=\027,\276\275\357\0344>\273\312J\276\270\\\247<\335\216\203\275f\250\220\276\320\332\300\275\215+M\276\301\340\330=\\b{\274\327\355\231=\205!\277=]\275\263<\230}\202>\304\352\364\272N&b\276\204)\032>z\025\026\275\365\234\345\272\327\241\354=\213y|\275\242&5=\206\371\311\275\307FJ\275\337C\'>\342N&=U\014\032\275h\205\001<\233H5\276\370\201\376\274W\r\274\275`\002\265=\035\324\314\275t\262#\276\337\356\202\2768\311\023\2768v\303\275\333gi\275g\257\341\274C\001\314<\214\252@\276\261\243\370=\316\013N<\n\235Y>\323\347\362\273\236l\243=\272x\323=g>\003=\320\212\375\275<$$\276\020\227 <\006\374U=\370V^\276s6K\276\222\301\310<\347Wn>x\267\311\275\033\t\321\274bG\252=G\325\364=\002\335\017>\244a]=\234\212|\275\n\2041>6+<=\304+\261\274\354F\267<\203\274&\276\tg\025>\004M\373;\354\203\233=\033\224]=\362)\202<\371\241\243=s\365\005=\272\337\274;l\356B=\nRI>\245@Y>v\366H>\013\330\330=\241\254!>8\3703\275\316Y\203\275\214t\244\275i\221\264\275\301\343L\275\225r4>\000\3673=\253\361(>\273R\342=\003\272`\276\246_\213=.*\360=R\023\303=^\331f>\223X\334\275\006\002\330\275`M\036>\002(\257\2769\026\003=\231a\325=:e\246=\222\374\361<\316\233\255\275\325\327&\2731pE\275\343\204\214<\010~\327\273P\332R\276T\252\203\275V\350\311\275,\214k==\000\023\275\225n\276=\347\311\035>\247^\320\275\344\317\233>\310\364\031<\366\367\207\274w\320\027>\225\354p\275\0078\327=\272\024\356=\217C\n\276\3322-\276\013L\033\276\333NQ>;\317\n\276\336\t\320</at>\364\364\326<\200K\215>yz\000>i\347\006\276(\222A=A\317\272\2755%^\275\360#o=G\341c\276\360\207\247=\214!\201\276\330.s=\341\007v<\253\303\234=\241{\235\276_(\272<P\\C\276\377\375b\276\326\364\351=?~A\2757R\221\2753\026\332\275y\342\016=\224\254#>\26011<\266+T\275\272\031\035\276>I\007=\336\373\360=U\310\214>o\217\276\275\242\233\332<\315B\361<\313 \266\275\npq\2767\024\262\275\321\033\000\275\343V\376\275y\316\3439\226\321\377\275\243\374\232;>3\252\274\\\253z>\200\323\245\275\222\351N>\316\371B>\234\005\216>\006,\005=B\273\246=D\375\'\275\':\346\275[\351\200\276\374\274\256=\354*P<vq\036>R\007\240\275\"\245p\274\224\270\000>:\373\254=\220\302\206\275D\020\220=b\235N=\300\322+\275\302\237\275=\365\367\034\276\253\266?\275V\314\247\276\231\002L>\246\277\250=\200\366\274=y\366\037\275\215\356\244\275?65\276\277\361\2668D\365X\274q\314Y=\214]K=\341IN>\334H\">\257\365\260\275\2603*=\315\000\203\273v\r\354\274\357\354g\275<\330P>C\021\255=\013\000\026\275P\214s\276\203\373p\275\230\347\223\275\010\320)\275\236\275\364=\267\374\377\275\255m\263\275E\362\020=Hk\231\274\263\331\346=\301<;\275\361R\"\275\305\370\217\275\241\262^=\232R\007>\206\330\230\275\000:\212\275\032\360_=\341\271\205\276\3470\335<J7\327<\260\026\201\275\362\264R>\315>\355\275\227\036\346\275.|\023\275\234\300\022<Y\360^\276&\3121=\302_\021\275\267\027\002\276\243\362j\276\321\201\222\276\330PU\276\315j\201\275\230\213P\276E\365\211\275\"\n\261\276\274Lz=i\377\025\272\201\364g\275\ta\363=\223\302\237>t\3316>P\242\213=\226\337\313\275\014\227U=\331e\217\274:\271\363<\355\211I\276\312\301\265=\220\t\324=\256\320T\276u\221>\276M\210c\275\'\311,=>\007q<\024\371\302\275E\332|=\241\005\001>\342\275\237;\2271y=\310u\034>IwP>\271\263\327<\202\250\247<\213\257\220\275>\020X\275\227Qy>3\032G\275\271#\205\276,yp\275f\"\210=\rO\221>\326\345\344\275^\324\007\276u\324\240=>+\177\275\017\264\320\275R\233\377=TPH\275\315Y)>\353k\017\276\005:\307\274\310ho\274\"\333\347=:I&=E@\034=\316P]\275\253\236\373\275\307\360\312\275*\335X\276\227\207w=\375\362%>\226\320+>\314c%\276\0060\t\276\246\010\325:\000\177\225=\373\355\037=\320c\257\2755\013\322\274\274\002\252\275\362\316\257\273\373Td=[Tk>#\337\233<v\221\237\275\244\202\316=\334\276\257=\301\357\205>\251\254\225<\376%G=k\277A>n\266D\276\306\217*\276\277M\027>9\236\007\276xV\341==\370\214>0\240\013\275\037\265\345:"
}
}
}
}
node {
name: "net/recurrent_kernel"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 60
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "net/recurrent_kernel/Assign"
op: "Assign"
input: "net/recurrent_kernel"
input: "net/recurrent_kernel/initial_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/recurrent_kernel"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "net/recurrent_kernel/read"
op: "Identity"
input: "net/recurrent_kernel"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/recurrent_kernel"
}
}
}
}
node {
name: "net/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 60
}
}
float_val: 0.0
}
}
}
}
node {
name: "net/bias"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 60
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "net/bias/Assign"
op: "Assign"
input: "net/bias"
input: "net/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/bias"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "net/bias/read"
op: "Identity"
input: "net/bias"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/bias"
}
}
}
}
node {
name: "net/strided_slice/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\000\000\000\000"
}
}
}
}
node {
name: "net/strided_slice/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\024\000\000\000"
}
}
}
}
node {
name: "net/strided_slice/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "net/strided_slice"
op: "StridedSlice"
input: "net/kernel/read"
input: "net/strided_slice/stack"
input: "net/strided_slice/stack_1"
input: "net/strided_slice/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 3
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_1/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\000\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_1/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\024\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_1/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_1"
op: "StridedSlice"
input: "net/recurrent_kernel/read"
input: "net/strided_slice_1/stack"
input: "net/strided_slice_1/stack_1"
input: "net/strided_slice_1/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 3
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_2/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\024\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_2/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000(\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_2/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_2"
op: "StridedSlice"
input: "net/kernel/read"
input: "net/strided_slice_2/stack"
input: "net/strided_slice_2/stack_1"
input: "net/strided_slice_2/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_3/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\024\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_3/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000(\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_3/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_3"
op: "StridedSlice"
input: "net/recurrent_kernel/read"
input: "net/strided_slice_3/stack"
input: "net/strided_slice_3/stack_1"
input: "net/strided_slice_3/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_4/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000(\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_4/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\000\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_4/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_4"
op: "StridedSlice"
input: "net/kernel/read"
input: "net/strided_slice_4/stack"
input: "net/strided_slice_4/stack_1"
input: "net/strided_slice_4/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 3
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_5/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000(\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_5/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\000\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_5/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_5"
op: "StridedSlice"
input: "net/recurrent_kernel/read"
input: "net/strided_slice_5/stack"
input: "net/strided_slice_5/stack_1"
input: "net/strided_slice_5/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 3
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_6/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/strided_slice_6/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 20
}
}
}
}
node {
name: "net/strided_slice_6/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_6"
op: "StridedSlice"
input: "net/bias/read"
input: "net/strided_slice_6/stack"
input: "net/strided_slice_6/stack_1"
input: "net/strided_slice_6/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_7/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 20
}
}
}
}
node {
name: "net/strided_slice_7/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 40
}
}
}
}
node {
name: "net/strided_slice_7/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_7"
op: "StridedSlice"
input: "net/bias/read"
input: "net/strided_slice_7/stack"
input: "net/strided_slice_7/stack_1"
input: "net/strided_slice_7/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_8/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 40
}
}
}
}
node {
name: "net/strided_slice_8/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/strided_slice_8/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_8"
op: "StridedSlice"
input: "net/bias/read"
input: "net/strided_slice_8/stack"
input: "net/strided_slice_8/stack_1"
input: "net/strided_slice_8/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/zeros_like"
op: "ZerosLike"
input: "net_input"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/Sum/reduction_indices"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\002\000\000\000"
}
}
}
}
node {
name: "net/Sum"
op: "Sum"
input: "net/zeros_like"
input: "net/Sum/reduction_indices"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "net/ExpandDims/dim"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "net/ExpandDims"
op: "ExpandDims"
input: "net/Sum"
input: "net/ExpandDims/dim"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tdim"
value {
type: DT_INT32
}
}
}
node {
name: "net/Tile/multiples"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\024\000\000\000"
}
}
}
}
node {
name: "net/Tile"
op: "Tile"
input: "net/ExpandDims"
input: "net/Tile/multiples"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tmultiples"
value {
type: DT_INT32
}
}
}
node {
name: "net/transpose/perm"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 3
}
}
tensor_content: "\001\000\000\000\000\000\000\000\002\000\000\000"
}
}
}
}
node {
name: "net/transpose"
op: "Transpose"
input: "net_input"
input: "net/transpose/perm"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tperm"
value {
type: DT_INT32
}
}
}
node {
name: "net/Shape"
op: "Shape"
input: "net/transpose"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "net/strided_slice_9/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/strided_slice_9/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_9/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_9"
op: "StridedSlice"
input: "net/Shape"
input: "net/strided_slice_9/stack"
input: "net/strided_slice_9/stack_1"
input: "net/strided_slice_9/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 1
}
}
}
node {
name: "net/strided_slice_10/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/strided_slice_10/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_10/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_10"
op: "StridedSlice"
input: "net/transpose"
input: "net/strided_slice_10/stack"
input: "net/strided_slice_10/stack_1"
input: "net/strided_slice_10/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 1
}
}
}
node {
name: "net/Shape_1"
op: "Shape"
input: "net/strided_slice_10"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "net/strided_slice_11/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: -1
}
}
}
}
node {
name: "net/strided_slice_11/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/strided_slice_11/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_11"
op: "StridedSlice"
input: "net/Shape_1"
input: "net/strided_slice_11/stack"
input: "net/strided_slice_11/stack_1"
input: "net/strided_slice_11/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 1
}
}
}
node {
name: "net/Shape_2"
op: "Shape"
input: "net/strided_slice_10"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "net/strided_slice_12/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/strided_slice_12/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_12/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_12"
op: "StridedSlice"
input: "net/Shape_2"
input: "net/strided_slice_12/stack"
input: "net/strided_slice_12/stack_1"
input: "net/strided_slice_12/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 1
}
}
}
node {
name: "net/ones/mul"
op: "Mul"
input: "net/strided_slice_12"
input: "net/strided_slice_11"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/ones/Less/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1000
}
}
}
}
node {
name: "net/ones/Less"
op: "Less"
input: "net/ones/mul"
input: "net/ones/Less/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/ones/packed"
op: "Pack"
input: "net/strided_slice_12"
input: "net/strided_slice_11"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "axis"
value {
i: 0
}
}
}
node {
name: "net/ones/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/ones"
op: "Fill"
input: "net/ones/packed"
input: "net/ones/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "net/mul"
op: "Mul"
input: "net/strided_slice_10"
input: "net/ones"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_1"
op: "Mul"
input: "net/strided_slice_10"
input: "net/ones"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_2"
op: "Mul"
input: "net/strided_slice_10"
input: "net/ones"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/MatMul"
op: "MatMul"
input: "net/mul"
input: "net/strided_slice"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/MatMul_1"
op: "MatMul"
input: "net/mul_1"
input: "net/strided_slice_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/MatMul_2"
op: "MatMul"
input: "net/mul_2"
input: "net/strided_slice_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/BiasAdd"
op: "BiasAdd"
input: "net/MatMul"
input: "net/strided_slice_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "net/BiasAdd_1"
op: "BiasAdd"
input: "net/MatMul_1"
input: "net/strided_slice_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "net/BiasAdd_2"
op: "BiasAdd"
input: "net/MatMul_2"
input: "net/strided_slice_8"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "net/MatMul_3"
op: "MatMul"
input: "net/Tile"
input: "net/strided_slice_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/MatMul_4"
op: "MatMul"
input: "net/Tile"
input: "net/strided_slice_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/add"
op: "Add"
input: "net/BiasAdd"
input: "net/MatMul_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_3/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2
}
}
}
}
node {
name: "net/mul_3"
op: "Mul"
input: "net/mul_3/x"
input: "net/add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/add_1/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.5
}
}
}
}
node {
name: "net/add_1"
op: "Add"
input: "net/mul_3"
input: "net/add_1/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/Const_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "net/Const_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/clip_by_value/Minimum"
op: "Minimum"
input: "net/add_1"
input: "net/Const_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/clip_by_value"
op: "Maximum"
input: "net/clip_by_value/Minimum"
input: "net/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/add_2"
op: "Add"
input: "net/BiasAdd_1"
input: "net/MatMul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_4/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2
}
}
}
}
node {
name: "net/mul_4"
op: "Mul"
input: "net/mul_4/x"
input: "net/add_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/add_3/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.5
}
}
}
}
node {
name: "net/add_3"
op: "Add"
input: "net/mul_4"
input: "net/add_3/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/Const_3"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "net/Const_4"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/clip_by_value_1/Minimum"
op: "Minimum"
input: "net/add_3"
input: "net/Const_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/clip_by_value_1"
op: "Maximum"
input: "net/clip_by_value_1/Minimum"
input: "net/Const_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_5"
op: "Mul"
input: "net/clip_by_value_1"
input: "net/Tile"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/MatMul_5"
op: "MatMul"
input: "net/mul_5"
input: "net/strided_slice_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/add_4"
op: "Add"
input: "net/BiasAdd_2"
input: "net/MatMul_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_6"
op: "Mul"
input: "net/clip_by_value"
input: "net/Tile"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/sub/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/sub"
op: "Sub"
input: "net/sub/x"
input: "net/clip_by_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_7"
op: "Mul"
input: "net/sub"
input: "net/add_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/add_5"
op: "Add"
input: "net/mul_6"
input: "net/mul_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/TensorArray"
op: "TensorArrayV3"
input: "net/strided_slice_9"
attr {
key: "clear_after_read"
value {
b: true
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "dynamic_size"
value {
b: false
}
}
attr {
key: "element_shape"
value {
shape {
unknown_rank: true
}
}
}
attr {
key: "identical_element_shapes"
value {
b: true
}
}
attr {
key: "tensor_array_name"
value {
s: "output_ta"
}
}
}
node {
name: "net/TensorArray_1"
op: "TensorArrayV3"
input: "net/strided_slice_9"
attr {
key: "clear_after_read"
value {
b: true
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "dynamic_size"
value {
b: false
}
}
attr {
key: "element_shape"
value {
shape {
unknown_rank: true
}
}
}
attr {
key: "identical_element_shapes"
value {
b: true
}
}
attr {
key: "tensor_array_name"
value {
s: "input_ta"
}
}
}
node {
name: "net/TensorArrayUnstack/Shape"
op: "Shape"
input: "net/transpose"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "net/TensorArrayUnstack/strided_slice/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/TensorArrayUnstack/strided_slice/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/TensorArrayUnstack/strided_slice/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/TensorArrayUnstack/strided_slice"
op: "StridedSlice"
input: "net/TensorArrayUnstack/Shape"
input: "net/TensorArrayUnstack/strided_slice/stack"
input: "net/TensorArrayUnstack/strided_slice/stack_1"
input: "net/TensorArrayUnstack/strided_slice/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 1
}
}
}
node {
name: "net/TensorArrayUnstack/range/start"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 0
}
}
}
}
node {
name: "net/TensorArrayUnstack/range/delta"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "net/TensorArrayUnstack/range"
op: "Range"
input: "net/TensorArrayUnstack/range/start"
input: "net/TensorArrayUnstack/strided_slice"
input: "net/TensorArrayUnstack/range/delta"
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
}
node {
name: "net/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3"
op: "TensorArrayScatterV3"
input: "net/TensorArray_1"
input: "net/TensorArrayUnstack/range"
input: "net/transpose"
input: "net/TensorArray_1:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/transpose"
}
}
}
}
node {
name: "net/time"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 0
}
}
}
}
node {
name: "net/while/Enter"
op: "Enter"
input: "net/time"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/Enter_1"
op: "Enter"
input: "net/TensorArray:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/Enter_2"
op: "Enter"
input: "net/Tile"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/Merge"
op: "Merge"
input: "net/while/Enter"
input: "net/while/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/while/Merge_1"
op: "Merge"
input: "net/while/Enter_1"
input: "net/while/NextIteration_1"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Merge_2"
op: "Merge"
input: "net/while/Enter_2"
input: "net/while/NextIteration_2"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Less"
op: "Less"
input: "net/while/Merge"
input: "net/while/Less/Enter"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/while/Less/Enter"
op: "Enter"
input: "net/strided_slice_9"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/LoopCond"
op: "LoopCond"
input: "net/while/Less"
}
node {
name: "net/while/Switch"
op: "Switch"
input: "net/while/Merge"
input: "net/while/LoopCond"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge"
}
}
}
}
node {
name: "net/while/Switch_1"
op: "Switch"
input: "net/while/Merge_1"
input: "net/while/LoopCond"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_1"
}
}
}
}
node {
name: "net/while/Switch_2"
op: "Switch"
input: "net/while/Merge_2"
input: "net/while/LoopCond"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_2"
}
}
}
}
node {
name: "net/while/Identity"
op: "Identity"
input: "net/while/Switch:1"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/while/Identity_1"
op: "Identity"
input: "net/while/Switch_1:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Identity_2"
op: "Identity"
input: "net/while/Switch_2:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/TensorArrayReadV3"
op: "TensorArrayReadV3"
input: "net/while/TensorArrayReadV3/Enter"
input: "net/while/Identity"
input: "net/while/TensorArrayReadV3/Enter_1"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/TensorArrayReadV3/Enter"
op: "Enter"
input: "net/TensorArray_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/TensorArrayReadV3/Enter_1"
op: "Enter"
input: "net/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/mul"
op: "Mul"
input: "net/while/TensorArrayReadV3"
input: "net/while/mul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul/Enter"
op: "Enter"
input: "net/ones"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/mul_1"
op: "Mul"
input: "net/while/TensorArrayReadV3"
input: "net/while/mul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul_2"
op: "Mul"
input: "net/while/TensorArrayReadV3"
input: "net/while/mul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/MatMul"
op: "MatMul"
input: "net/while/mul"
input: "net/while/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/while/MatMul/Enter"
op: "Enter"
input: "net/strided_slice"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/MatMul_1"
op: "MatMul"
input: "net/while/mul_1"
input: "net/while/MatMul_1/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/while/MatMul_1/Enter"
op: "Enter"
input: "net/strided_slice_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/MatMul_2"
op: "MatMul"
input: "net/while/mul_2"
input: "net/while/MatMul_2/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/while/MatMul_2/Enter"
op: "Enter"
input: "net/strided_slice_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/BiasAdd"
op: "BiasAdd"
input: "net/while/MatMul"
input: "net/while/BiasAdd/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "net/while/BiasAdd/Enter"
op: "Enter"
input: "net/strided_slice_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/BiasAdd_1"
op: "BiasAdd"
input: "net/while/MatMul_1"
input: "net/while/BiasAdd_1/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "net/while/BiasAdd_1/Enter"
op: "Enter"
input: "net/strided_slice_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/BiasAdd_2"
op: "BiasAdd"
input: "net/while/MatMul_2"
input: "net/while/BiasAdd_2/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "net/while/BiasAdd_2/Enter"
op: "Enter"
input: "net/strided_slice_8"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/MatMul_3"
op: "MatMul"
input: "net/while/Identity_2"
input: "net/while/MatMul_3/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/while/MatMul_3/Enter"
op: "Enter"
input: "net/strided_slice_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/MatMul_4"
op: "MatMul"
input: "net/while/Identity_2"
input: "net/while/MatMul_4/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/while/MatMul_4/Enter"
op: "Enter"
input: "net/strided_slice_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/add"
op: "Add"
input: "net/while/BiasAdd"
input: "net/while/MatMul_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul_3/x"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2
}
}
}
}
node {
name: "net/while/mul_3"
op: "Mul"
input: "net/while/mul_3/x"
input: "net/while/add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/add_1/y"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.5
}
}
}
}
node {
name: "net/while/add_1"
op: "Add"
input: "net/while/mul_3"
input: "net/while/add_1/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Const"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "net/while/Const_1"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/while/clip_by_value/Minimum"
op: "Minimum"
input: "net/while/add_1"
input: "net/while/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/clip_by_value"
op: "Maximum"
input: "net/while/clip_by_value/Minimum"
input: "net/while/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/add_2"
op: "Add"
input: "net/while/BiasAdd_1"
input: "net/while/MatMul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul_4/x"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2
}
}
}
}
node {
name: "net/while/mul_4"
op: "Mul"
input: "net/while/mul_4/x"
input: "net/while/add_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/add_3/y"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.5
}
}
}
}
node {
name: "net/while/add_3"
op: "Add"
input: "net/while/mul_4"
input: "net/while/add_3/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Const_2"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "net/while/Const_3"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/while/clip_by_value_1/Minimum"
op: "Minimum"
input: "net/while/add_3"
input: "net/while/Const_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/clip_by_value_1"
op: "Maximum"
input: "net/while/clip_by_value_1/Minimum"
input: "net/while/Const_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul_5"
op: "Mul"
input: "net/while/clip_by_value_1"
input: "net/while/Identity_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/MatMul_5"
op: "MatMul"
input: "net/while/mul_5"
input: "net/while/MatMul_5/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/while/MatMul_5/Enter"
op: "Enter"
input: "net/strided_slice_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/add_4"
op: "Add"
input: "net/while/BiasAdd_2"
input: "net/while/MatMul_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul_6"
op: "Mul"
input: "net/while/clip_by_value"
input: "net/while/Identity_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/sub/x"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/while/sub"
op: "Sub"
input: "net/while/sub/x"
input: "net/while/clip_by_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul_7"
op: "Mul"
input: "net/while/sub"
input: "net/while/add_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/add_5"
op: "Add"
input: "net/while/mul_6"
input: "net/while/mul_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/TensorArrayWrite/TensorArrayWriteV3"
op: "TensorArrayWriteV3"
input: "net/while/TensorArrayWrite/TensorArrayWriteV3/Enter"
input: "net/while/Identity"
input: "net/while/add_5"
input: "net/while/Identity_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
}
node {
name: "net/while/TensorArrayWrite/TensorArrayWriteV3/Enter"
op: "Enter"
input: "net/TensorArray"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/add_6/y"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "net/while/add_6"
op: "Add"
input: "net/while/Identity"
input: "net/while/add_6/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/while/NextIteration"
op: "NextIteration"
input: "net/while/add_6"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/while/NextIteration_1"
op: "NextIteration"
input: "net/while/TensorArrayWrite/TensorArrayWriteV3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/NextIteration_2"
op: "NextIteration"
input: "net/while/add_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Exit"
op: "Exit"
input: "net/while/Switch"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/while/Exit_1"
op: "Exit"
input: "net/while/Switch_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Exit_2"
op: "Exit"
input: "net/while/Switch_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/TensorArrayStack/TensorArraySizeV3"
op: "TensorArraySizeV3"
input: "net/TensorArray"
input: "net/while/Exit_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
}
}
}
}
node {
name: "net/TensorArrayStack/range/start"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 0
}
}
}
}
node {
name: "net/TensorArrayStack/range/delta"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "net/TensorArrayStack/range"
op: "Range"
input: "net/TensorArrayStack/range/start"
input: "net/TensorArrayStack/TensorArraySizeV3"
input: "net/TensorArrayStack/range/delta"
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
}
}
}
}
node {
name: "net/TensorArrayStack/TensorArrayGatherV3"
op: "TensorArrayGatherV3"
input: "net/TensorArray"
input: "net/TensorArrayStack/range"
input: "net/while/Exit_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "element_shape"
value {
shape {
dim {
size: -1
}
dim {
size: 20
}
}
}
}
}
node {
name: "net/sub_1/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "net/sub_1"
op: "Sub"
input: "net/while/Exit"
input: "net/sub_1/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/TensorArrayReadV3"
op: "TensorArrayReadV3"
input: "net/TensorArray"
input: "net/sub_1"
input: "net/while/Exit_1"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/transpose_1/perm"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 3
}
}
tensor_content: "\001\000\000\000\000\000\000\000\002\000\000\000"
}
}
}
}
node {
name: "net/transpose_1"
op: "Transpose"
input: "net/TensorArrayStack/TensorArrayGatherV3"
input: "net/transpose_1/perm"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tperm"
value {
type: DT_INT32
}
}
}
node {
name: "dense_1/random_uniform/shape"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\024\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "dense_1/random_uniform/min"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: -0.5345225
}
}
}
}
node {
name: "dense_1/random_uniform/max"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.5345225
}
}
}
}
node {
name: "dense_1/random_uniform/RandomUniform"
op: "RandomUniform"
input: "dense_1/random_uniform/shape"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "seed"
value {
i: 87654321
}
}
attr {
key: "seed2"
value {
i: 9560831
}
}
}
node {
name: "dense_1/random_uniform/sub"
op: "Sub"
input: "dense_1/random_uniform/max"
input: "dense_1/random_uniform/min"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "dense_1/random_uniform/mul"
op: "Mul"
input: "dense_1/random_uniform/RandomUniform"
input: "dense_1/random_uniform/sub"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "dense_1/random_uniform"
op: "Add"
input: "dense_1/random_uniform/mul"
input: "dense_1/random_uniform/min"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "dense_1/kernel"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 1
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "dense_1/kernel/Assign"
op: "Assign"
input: "dense_1/kernel"
input: "dense_1/random_uniform"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/kernel"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "dense_1/kernel/read"
op: "Identity"
input: "dense_1/kernel"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/kernel"
}
}
}
}
node {
name: "dense_1/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 1
}
}
float_val: 0.0
}
}
}
}
node {
name: "dense_1/bias"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 1
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "dense_1/bias/Assign"
op: "Assign"
input: "dense_1/bias"
input: "dense_1/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/bias"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "dense_1/bias/read"
op: "Identity"
input: "dense_1/bias"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/bias"
}
}
}
}
node {
name: "dense_1/MatMul"
op: "MatMul"
input: "net/TensorArrayReadV3"
input: "dense_1/kernel/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "dense_1/BiasAdd"
op: "BiasAdd"
input: "dense_1/MatMul"
input: "dense_1/bias/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "dense_1/Sigmoid"
op: "Sigmoid"
input: "dense_1/BiasAdd"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "Placeholder"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 13
}
dim {
size: 60
}
}
}
}
}
node {
name: "Assign"
op: "Assign"
input: "net/kernel"
input: "Placeholder"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/kernel"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_1"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 60
}
}
}
}
}
node {
name: "Assign_1"
op: "Assign"
input: "net/recurrent_kernel"
input: "Placeholder_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/recurrent_kernel"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_2"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 60
}
}
}
}
}
node {
name: "Assign_2"
op: "Assign"
input: "net/bias"
input: "Placeholder_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/bias"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_3"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 1
}
}
}
}
}
node {
name: "Assign_3"
op: "Assign"
input: "dense_1/kernel"
input: "Placeholder_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/kernel"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_4"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 1
}
}
}
}
}
node {
name: "Assign_4"
op: "Assign"
input: "dense_1/bias"
input: "Placeholder_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/bias"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "IsVariableInitialized"
op: "IsVariableInitialized"
input: "net/kernel"
attr {
key: "_class"
value {
list {
s: "loc:@net/kernel"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_1"
op: "IsVariableInitialized"
input: "net/recurrent_kernel"
attr {
key: "_class"
value {
list {
s: "loc:@net/recurrent_kernel"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_2"
op: "IsVariableInitialized"
input: "net/bias"
attr {
key: "_class"
value {
list {
s: "loc:@net/bias"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_3"
op: "IsVariableInitialized"
input: "dense_1/kernel"
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/kernel"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_4"
op: "IsVariableInitialized"
input: "dense_1/bias"
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/bias"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "init"
op: "NoOp"
input: "^dense_1/bias/Assign"
input: "^dense_1/kernel/Assign"
input: "^net/bias/Assign"
input: "^net/kernel/Assign"
input: "^net/recurrent_kernel/Assign"
}
node {
name: "RMSprop/lr/initial_value"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.001
}
}
}
}
node {
name: "RMSprop/lr"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "RMSprop/lr/Assign"
op: "Assign"
input: "RMSprop/lr"
input: "RMSprop/lr/initial_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/lr"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "RMSprop/lr/read"
op: "Identity"
input: "RMSprop/lr"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/lr"
}
}
}
}
node {
name: "RMSprop/rho/initial_value"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.9
}
}
}
}
node {
name: "RMSprop/rho"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "RMSprop/rho/Assign"
op: "Assign"
input: "RMSprop/rho"
input: "RMSprop/rho/initial_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/rho"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "RMSprop/rho/read"
op: "Identity"
input: "RMSprop/rho"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/rho"
}
}
}
}
node {
name: "RMSprop/decay/initial_value"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "RMSprop/decay"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "RMSprop/decay/Assign"
op: "Assign"
input: "RMSprop/decay"
input: "RMSprop/decay/initial_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/decay"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "RMSprop/decay/read"
op: "Identity"
input: "RMSprop/decay"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/decay"
}
}
}
}
node {
name: "RMSprop/iterations/initial_value"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT64
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT64
tensor_shape {
}
int64_val: 0
}
}
}
}
node {
name: "RMSprop/iterations"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_INT64
}
}
attr {
key: "shape"
value {
shape {
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "RMSprop/iterations/Assign"
op: "Assign"
input: "RMSprop/iterations"
input: "RMSprop/iterations/initial_value"
attr {
key: "T"
value {
type: DT_INT64
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/iterations"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "RMSprop/iterations/read"
op: "Identity"
input: "RMSprop/iterations"
attr {
key: "T"
value {
type: DT_INT64
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/iterations"
}
}
}
}
node {
name: "dense_1_target"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: -1
}
dim {
size: -1
}
}
}
}
}
node {
name: "dense_1_sample_weights"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: -1
}
}
}
}
}
node {
name: "loss/dense_1_loss/add/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "loss/dense_1_loss/add"
op: "Add"
input: "loss/dense_1_loss/add/x"
input: "dense_1_target"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Neg"
op: "Neg"
input: "loss/dense_1_loss/add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/add_1/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "loss/dense_1_loss/add_1"
op: "Add"
input: "loss/dense_1_loss/add_1/x"
input: "dense_1/Sigmoid"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/add_2/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "loss/dense_1_loss/add_2"
op: "Add"
input: "loss/dense_1_loss/add_1"
input: "loss/dense_1_loss/add_2/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Log"
op: "Log"
input: "loss/dense_1_loss/add_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/mul"
op: "Mul"
input: "loss/dense_1_loss/Neg"
input: "loss/dense_1_loss/Log"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/sub/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "loss/dense_1_loss/sub"
op: "Sub"
input: "loss/dense_1_loss/sub/x"
input: "dense_1_target"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Neg_1"
op: "Neg"
input: "loss/dense_1_loss/sub"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/sub_1/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "loss/dense_1_loss/sub_1"
op: "Sub"
input: "loss/dense_1_loss/sub_1/x"
input: "dense_1/Sigmoid"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/add_3/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "loss/dense_1_loss/add_3"
op: "Add"
input: "loss/dense_1_loss/sub_1"
input: "loss/dense_1_loss/add_3/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Log_1"
op: "Log"
input: "loss/dense_1_loss/add_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/mul_1"
op: "Mul"
input: "loss/dense_1_loss/Neg_1"
input: "loss/dense_1_loss/Log_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "loss/dense_1_loss/Mean"
op: "Mean"
input: "loss/dense_1_loss/mul_1"
input: "loss/dense_1_loss/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "loss/dense_1_loss/mul_2/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.9
}
}
}
}
node {
name: "loss/dense_1_loss/mul_2"
op: "Mul"
input: "loss/dense_1_loss/mul_2/x"
input: "loss/dense_1_loss/Mean"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Const_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "loss/dense_1_loss/Mean_1"
op: "Mean"
input: "loss/dense_1_loss/mul"
input: "loss/dense_1_loss/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "loss/dense_1_loss/mul_3/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.1
}
}
}
}
node {
name: "loss/dense_1_loss/mul_3"
op: "Mul"
input: "loss/dense_1_loss/mul_3/x"
input: "loss/dense_1_loss/Mean_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/add_4"
op: "Add"
input: "loss/dense_1_loss/mul_2"
input: "loss/dense_1_loss/mul_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Mean_2/reduction_indices"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "loss/dense_1_loss/Mean_2"
op: "Mean"
input: "loss/dense_1_loss/add_4"
input: "loss/dense_1_loss/Mean_2/reduction_indices"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "loss/dense_1_loss/mul_4"
op: "Mul"
input: "loss/dense_1_loss/Mean_2"
input: "dense_1_sample_weights"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/NotEqual/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "loss/dense_1_loss/NotEqual"
op: "NotEqual"
input: "dense_1_sample_weights"
input: "loss/dense_1_loss/NotEqual/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Cast"
op: "Cast"
input: "loss/dense_1_loss/NotEqual"
attr {
key: "DstT"
value {
type: DT_FLOAT
}
}
attr {
key: "SrcT"
value {
type: DT_BOOL
}
}
attr {
key: "Truncate"
value {
b: false
}
}
}
node {
name: "loss/dense_1_loss/Const_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "loss/dense_1_loss/Mean_3"
op: "Mean"
input: "loss/dense_1_loss/Cast"
input: "loss/dense_1_loss/Const_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "loss/dense_1_loss/truediv"
op: "RealDiv"
input: "loss/dense_1_loss/mul_4"
input: "loss/dense_1_loss/Mean_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Const_3"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "loss/dense_1_loss/Mean_4"
op: "Mean"
input: "loss/dense_1_loss/truediv"
input: "loss/dense_1_loss/Const_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "loss/mul/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "loss/mul"
op: "Mul"
input: "loss/mul/x"
input: "loss/dense_1_loss/Mean_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "metrics/acc/Round"
op: "Round"
input: "dense_1/Sigmoid"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "metrics/acc/Equal"
op: "Equal"
input: "dense_1_target"
input: "metrics/acc/Round"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "metrics/acc/Cast"
op: "Cast"
input: "metrics/acc/Equal"
attr {
key: "DstT"
value {
type: DT_FLOAT
}
}
attr {
key: "SrcT"
value {
type: DT_BOOL
}
}
attr {
key: "Truncate"
value {
b: false
}
}
}
node {
name: "metrics/acc/Mean/reduction_indices"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "metrics/acc/Mean"
op: "Mean"
input: "metrics/acc/Cast"
input: "metrics/acc/Mean/reduction_indices"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "metrics/acc/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "metrics/acc/Mean_1"
op: "Mean"
input: "metrics/acc/Mean"
input: "metrics/acc/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/mul"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/grad_ys_0"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/mul"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/gradients/Fill"
op: "Fill"
input: "training/RMSprop/gradients/Shape"
input: "training/RMSprop/gradients/grad_ys_0"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/mul"
}
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/f_count"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/f_count_1"
op: "Enter"
input: "training/RMSprop/gradients/f_count"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/Merge"
op: "Merge"
input: "training/RMSprop/gradients/f_count_1"
input: "training/RMSprop/gradients/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/Switch"
op: "Switch"
input: "training/RMSprop/gradients/Merge"
input: "net/while/LoopCond"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/Add/y"
op: "Const"
input: "^net/while/Identity"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "training/RMSprop/gradients/Add"
op: "Add"
input: "training/RMSprop/gradients/Switch:1"
input: "training/RMSprop/gradients/Add/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/Add"
input: "^training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPushV2"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/f_count_2"
op: "Exit"
input: "training/RMSprop/gradients/Switch"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/b_count"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "training/RMSprop/gradients/b_count_1"
op: "Enter"
input: "training/RMSprop/gradients/f_count_2"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/Merge_1"
op: "Merge"
input: "training/RMSprop/gradients/b_count_1"
input: "training/RMSprop/gradients/NextIteration_1"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/GreaterEqual"
op: "GreaterEqual"
input: "training/RMSprop/gradients/Merge_1"
input: "training/RMSprop/gradients/GreaterEqual/Enter"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/GreaterEqual/Enter"
op: "Enter"
input: "training/RMSprop/gradients/b_count"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/b_count_2"
op: "LoopCond"
input: "training/RMSprop/gradients/GreaterEqual"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/Switch_1"
op: "Switch"
input: "training/RMSprop/gradients/Merge_1"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/Sub"
op: "Sub"
input: "training/RMSprop/gradients/Switch_1:1"
input: "training/RMSprop/gradients/GreaterEqual/Enter"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/NextIteration_1"
op: "NextIteration"
input: "training/RMSprop/gradients/Sub"
input: "^training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/b_sync"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/b_count_3"
op: "Exit"
input: "training/RMSprop/gradients/Switch_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/mul_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/Fill"
input: "loss/dense_1_loss/Mean_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/mul_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/Fill"
input: "loss/mul/x"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Reshape/shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/mul_grad/Mul_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Reshape/shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/truediv"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Tile"
op: "Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tmultiples"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape_1"
op: "Shape"
input: "loss/dense_1_loss/truediv"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape_2"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Prod"
op: "Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Const"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Prod_1"
op: "Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape_2"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Const_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Maximum/y"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Maximum"
op: "Maximum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Prod_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Maximum/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/floordiv"
op: "FloorDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Maximum"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Cast"
op: "Cast"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/floordiv"
attr {
key: "DstT"
value {
type: DT_FLOAT
}
}
attr {
key: "SrcT"
value {
type: DT_INT32
}
}
attr {
key: "Truncate"
value {
b: false
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/truediv"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Cast"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/mul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/truediv"
input: "loss/dense_1_loss/Mean_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Neg"
op: "Neg"
input: "loss/dense_1_loss/mul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv_1"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Neg"
input: "loss/dense_1_loss/Mean_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv_2"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv_1"
input: "loss/dense_1_loss/Mean_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/truediv"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape_1"
op: "Shape"
input: "dense_1_sample_weights"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Reshape"
input: "dense_1_sample_weights"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Mul_1"
op: "Mul"
input: "loss/dense_1_loss/Mean_2"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Mul_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Reshape/shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Reshape/shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Tile"
op: "Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tmultiples"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_2_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv"
input: "loss/dense_1_loss/Mean"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_2_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv"
input: "loss/dense_1_loss/mul_2/x"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_3_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv"
input: "loss/dense_1_loss/Mean_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_3_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv"
input: "loss/dense_1_loss/mul_3/x"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Reshape/shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_2_grad/Mul_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Reshape/shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/mul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Tile"
op: "Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tmultiples"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape_1"
op: "Shape"
input: "loss/dense_1_loss/mul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape_2"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Prod"
op: "Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Const"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Prod_1"
op: "Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape_2"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Const_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Maximum/y"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Maximum"
op: "Maximum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Prod_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Maximum/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/floordiv"
op: "FloorDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Maximum"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Cast"
op: "Cast"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/floordiv"
attr {
key: "DstT"
value {
type: DT_FLOAT
}
}
attr {
key: "SrcT"
value {
type: DT_INT32
}
}
attr {
key: "Truncate"
value {
b: false
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/truediv"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Cast"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Reshape/shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_3_grad/Mul_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Reshape/shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/mul"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Tile"
op: "Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tmultiples"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape_1"
op: "Shape"
input: "loss/dense_1_loss/mul"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape_2"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Prod"
op: "Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Const"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Prod_1"
op: "Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape_2"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Const_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Maximum/y"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Maximum"
op: "Maximum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Prod_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Maximum/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/floordiv"
op: "FloorDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Maximum"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Cast"
op: "Cast"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/floordiv"
attr {
key: "DstT"
value {
type: DT_FLOAT
}
}
attr {
key: "SrcT"
value {
type: DT_INT32
}
}
attr {
key: "Truncate"
value {
b: false
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/truediv"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Cast"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/Neg_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape_1"
op: "Shape"
input: "loss/dense_1_loss/Log_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/truediv"
input: "loss/dense_1_loss/Log_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Mul_1"
op: "Mul"
input: "loss/dense_1_loss/Neg_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/truediv"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Mul_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/Neg"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape_1"
op: "Shape"
input: "loss/dense_1_loss/Log"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/truediv"
input: "loss/dense_1_loss/Log"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Mul_1"
op: "Mul"
input: "loss/dense_1_loss/Neg"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/truediv"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Mul_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/Reciprocal"
op: "Reciprocal"
input: "loss/dense_1_loss/add_3"
input: "^training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Reshape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Log_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Reshape_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/Reciprocal"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Log_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/Reciprocal"
op: "Reciprocal"
input: "loss/dense_1_loss/add_2"
input: "^training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Reshape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Log"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Reshape_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/Reciprocal"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Log"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/sub_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/add_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape_1"
op: "Shape"
input: "dense_1/Sigmoid"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Neg"
op: "Neg"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Sum_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Neg"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape_1"
op: "Shape"
input: "dense_1/Sigmoid"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/AddN"
op: "AddN"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Reshape_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Reshape_1"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/dense_1/Sigmoid_grad/SigmoidGrad"
op: "SigmoidGrad"
input: "dense_1/Sigmoid"
input: "training/RMSprop/gradients/AddN"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/Sigmoid"
}
}
}
}
node {
name: "training/RMSprop/gradients/dense_1/BiasAdd_grad/BiasAddGrad"
op: "BiasAddGrad"
input: "training/RMSprop/gradients/dense_1/Sigmoid_grad/SigmoidGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/BiasAdd"
}
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/dense_1/Sigmoid_grad/SigmoidGrad"
input: "dense_1/kernel/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/MatMul"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul_1"
op: "MatMul"
input: "net/TensorArrayReadV3"
input: "training/RMSprop/gradients/dense_1/Sigmoid_grad/SigmoidGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/MatMul"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/TensorArrayGradV3"
op: "TensorArrayGradV3"
input: "net/TensorArray"
input: "net/while/Exit_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
s: "loc:@net/TensorArrayReadV3"
}
}
}
attr {
key: "source"
value {
s: "training/RMSprop/gradients"
}
}
}
node {
name: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/gradient_flow"
op: "Identity"
input: "net/while/Exit_1"
input: "^training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/TensorArrayGradV3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
s: "loc:@net/TensorArrayReadV3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayWrite/TensorArrayWriteV3"
op: "TensorArrayWriteV3"
input: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/TensorArrayGradV3"
input: "net/sub_1"
input: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul"
input: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/gradient_flow"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArrayReadV3"
}
}
}
}
node {
name: "training/RMSprop/gradients/zeros_like"
op: "ZerosLike"
input: "net/while/Exit_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Exit_1_grad/b_exit"
op: "Enter"
input: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayWrite/TensorArrayWriteV3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Exit_2_grad/b_exit"
op: "Enter"
input: "training/RMSprop/gradients/zeros_like"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_2"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Switch_1_grad/b_switch"
op: "Merge"
input: "training/RMSprop/gradients/net/while/Exit_1_grad/b_exit"
input: "training/RMSprop/gradients/net/while/Switch_1_grad_1/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Switch_2_grad/b_switch"
op: "Merge"
input: "training/RMSprop/gradients/net/while/Exit_2_grad/b_exit"
input: "training/RMSprop/gradients/net/while/Switch_2_grad_1/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/Switch_1_grad/b_switch"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Merge_2_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/Switch_2_grad/b_switch"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Enter_1_grad/Exit"
op: "Exit"
input: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Enter_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Enter_2_grad/Exit"
op: "Exit"
input: "training/RMSprop/gradients/net/while/Merge_2_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Enter_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3"
op: "TensorArrayGradV3"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3/Enter"
input: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch:1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "source"
value {
s: "training/RMSprop/gradients"
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3/Enter"
op: "Enter"
input: "net/TensorArray"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/gradient_flow"
op: "Identity"
input: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch:1"
input: "^training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3"
op: "TensorArrayReadV3"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/gradient_flow"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Identity"
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Identity"
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/Enter"
input: "net/while/Identity"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/b_sync"
op: "ControlTrigger"
input: "^training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/AddN_1"
op: "AddN"
input: "training/RMSprop/gradients/net/while/Merge_2_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/Shape"
op: "Shape"
input: "net/while/mul_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/Shape_1"
op: "Shape"
input: "net/while/mul_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/add_5_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/add_5_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/AddN_1"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_5_grad/Sum"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/AddN_1"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_5_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Shape"
op: "Shape"
input: "net/while/clip_by_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Shape_1"
op: "Shape"
input: "net/while/Identity_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/net/while/add_5_grad/Reshape"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Identity_2"
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Identity_2"
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/Enter"
input: "net/while/Identity_2"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Sum"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/Enter"
input: "net/while/clip_by_value"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Shape"
op: "Shape"
input: "net/while/sub"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Shape_1"
op: "Shape"
input: "net/while/add_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/net/while/add_5_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/Enter"
input: "net/while/add_4"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/Reshape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
s: "loc:@net/while/sub"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
s: "loc:@net/while/sub"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/Enter"
input: "net/while/sub"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Switch_1_grad_1/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Shape"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Shape_1"
op: "Shape"
input: "net/while/clip_by_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/sub_grad/Shape"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/sub_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/sub_grad/Sum"
input: "training/RMSprop/gradients/net/while/sub_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Neg"
op: "Neg"
input: "training/RMSprop/gradients/net/while/sub_grad/Sum_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/sub_grad/Neg"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/Shape"
op: "Shape"
input: "net/while/BiasAdd_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/Shape_1"
op: "Shape"
input: "net/while/MatMul_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/add_4_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/add_4_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_4_grad/Sum"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_4_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/AddN_2"
op: "AddN"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Reshape"
input: "training/RMSprop/gradients/net/while/sub_grad/Reshape_1"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape"
op: "Shape"
input: "net/while/clip_by_value/Minimum"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_2"
op: "Shape"
input: "training/RMSprop/gradients/AddN_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros/Const"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros"
op: "Fill"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual"
op: "GreaterEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Enter"
input: "net/while/clip_by_value/Minimum"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Const_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Select"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual"
input: "training/RMSprop/gradients/AddN_2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Select_1"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros"
input: "training/RMSprop/gradients/AddN_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Select_1"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2_grad/BiasAddGrad"
op: "BiasAddGrad"
input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2"
}
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul/Enter"
op: "Enter"
input: "net/strided_slice_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/Enter"
input: "net/while/mul_5"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape"
op: "Shape"
input: "net/while/add_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_2"
op: "Shape"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros/Const"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros"
op: "Fill"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual"
op: "LessEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Enter"
input: "net/while/add_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Const_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Select"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Select_1"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Select"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Select_1"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul/Enter"
op: "Enter"
input: "net/strided_slice_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
s: "loc:@net/while/mul_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
s: "loc:@net/while/mul_2"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/Enter"
input: "net/while/mul_2"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/BiasAdd_2_grad/BiasAddGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Shape"
op: "Shape"
input: "net/while/clip_by_value_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Shape_1"
op: "Shape"
input: "net/while/Identity_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Sum"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/Enter"
input: "net/while/clip_by_value_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/Shape"
op: "Shape"
input: "net/while/mul_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/Shape_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/add_1_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Reshape"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_1_grad/Sum"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Reshape"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_1_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/add_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 13
}
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_8_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_8"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 60
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_8_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_8_grad/Shape"
input: "net/strided_slice_8/stack"
input: "net/strided_slice_8/stack_1"
input: "net/strided_slice_8/stack_2"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_8"
}
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape"
op: "Shape"
input: "net/while/clip_by_value_1/Minimum"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_2"
op: "Shape"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros/Const"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros"
op: "Fill"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual"
op: "GreaterEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Enter"
input: "net/while/clip_by_value_1/Minimum"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Const_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Select"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Select_1"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Select_1"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_5_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\024\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_5_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_5_grad/Shape"
input: "net/strided_slice_5/stack"
input: "net/strided_slice_5/stack_1"
input: "net/strided_slice_5/stack_2"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_5"
}
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 3
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Shape"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Shape_1"
op: "Shape"
input: "net/while/add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Shape"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/net/while/add_1_grad/Reshape"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/Enter"
input: "net/while/add"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Sum"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul_1/Const"
input: "training/RMSprop/gradients/net/while/add_1_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul_1/Const"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul_1"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_4_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\r\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_4_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_4_grad/Shape"
input: "net/strided_slice_4/stack"
input: "net/strided_slice_4/stack_1"
input: "net/strided_slice_4/stack_2"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_4"
}
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 3
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape"
op: "Shape"
input: "net/while/add_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_2"
op: "Shape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros/Const"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros"
op: "Fill"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual"
op: "LessEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Enter"
input: "net/while/add_3"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Const_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Select"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Select_1"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Select_1"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/Shape"
op: "Shape"
input: "net/while/BiasAdd"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/Shape_1"
op: "Shape"
input: "net/while/MatMul_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/add_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/add_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_grad/Sum"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/Shape"
op: "Shape"
input: "net/while/mul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/Shape_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_3_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/add_3_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Reshape"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_3_grad/Sum"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Reshape"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_3_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/add_3_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_grad/BiasAddGrad"
op: "BiasAddGrad"
input: "training/RMSprop/gradients/net/while/add_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd"
}
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/add_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul/Enter"
op: "Enter"
input: "net/strided_slice_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul_1"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_grad/Reshape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Shape"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Shape_1"
op: "Shape"
input: "net/while/add_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Shape"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/net/while/add_3_grad/Reshape"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/Enter"
input: "net/while/add_2"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Sum"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul_1/Const"
input: "training/RMSprop/gradients/net/while/add_3_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul_1/Const"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul_1"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/add_grad/Reshape"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul/Enter"
op: "Enter"
input: "net/strided_slice"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
s: "loc:@net/while/mul"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
s: "loc:@net/while/mul"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/Enter"
input: "net/while/mul"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/BiasAdd_grad/BiasAddGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/Shape"
op: "Shape"
input: "net/while/BiasAdd_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/Shape_1"
op: "Shape"
input: "net/while/MatMul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/add_2_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/add_2_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_2_grad/Sum"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_2_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 13
}
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_6_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_6"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 60
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_6_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_6_grad/Shape"
input: "net/strided_slice_6/stack"
input: "net/strided_slice_6/stack_1"
input: "net/strided_slice_6/stack_2"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_6"
}
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_1_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\024\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_1_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_1_grad/Shape"
input: "net/strided_slice_1/stack"
input: "net/strided_slice_1/stack_1"
input: "net/strided_slice_1/stack_2"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_1"
}
}
}
attr {
key: "begin_mask"
value {
i: 3
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1_grad/BiasAddGrad"
op: "BiasAddGrad"
input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1"
}
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul/Enter"
op: "Enter"
input: "net/strided_slice_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul_1"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\r\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_grad/Shape"
input: "net/strided_slice/stack"
input: "net/strided_slice/stack_1"
input: "net/strided_slice/stack_2"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice"
}
}
}
attr {
key: "begin_mask"
value {
i: 3
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul/Enter"
op: "Enter"
input: "net/strided_slice_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
s: "loc:@net/while/mul_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
s: "loc:@net/while/mul_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/Enter"
input: "net/while/mul_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/BiasAdd_1_grad/BiasAddGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/AddN_3"
op: "AddN"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul"
input: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul"
attr {
key: "N"
value {
i: 4
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 13
}
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_7_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_7"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 60
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_7_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_7_grad/Shape"
input: "net/strided_slice_7/stack"
input: "net/strided_slice_7/stack_1"
input: "net/strided_slice_7/stack_2"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_7"
}
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Switch_2_grad_1/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/AddN_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_3_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\024\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_3_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_3_grad/Shape"
input: "net/strided_slice_3/stack"
input: "net/strided_slice_3/stack_1"
input: "net/strided_slice_3/stack_2"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_3"
}
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_2_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\r\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_2_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_2_grad/Shape"
input: "net/strided_slice_2/stack"
input: "net/strided_slice_2/stack_1"
input: "net/strided_slice_2/stack_2"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_2"
}
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/AddN_4"
op: "AddN"
input: "training/RMSprop/gradients/net/strided_slice_8_grad/StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_6_grad/StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_7_grad/StridedSliceGrad"
attr {
key: "N"
value {
i: 3
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_8"
}
}
}
}
node {
name: "training/RMSprop/gradients/AddN_5"
op: "AddN"
input: "training/RMSprop/gradients/net/strided_slice_5_grad/StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_1_grad/StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_3_grad/StridedSliceGrad"
attr {
key: "N"
value {
i: 3
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/AddN_6"
op: "AddN"
input: "training/RMSprop/gradients/net/strided_slice_4_grad/StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_grad/StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_2_grad/StridedSliceGrad"
attr {
key: "N"
value {
i: 3
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_4"
}
}
}
}
node {
name: "training/RMSprop/zeros"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 13
}
dim {
size: 60
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Variable"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 13
}
dim {
size: 60
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/Variable/Assign"
op: "Assign"
input: "training/RMSprop/Variable"
input: "training/RMSprop/zeros"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/Variable/read"
op: "Identity"
input: "training/RMSprop/Variable"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable"
}
}
}
}
node {
name: "training/RMSprop/zeros_1/shape_as_tensor"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\024\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/zeros_1/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/zeros_1"
op: "Fill"
input: "training/RMSprop/zeros_1/shape_as_tensor"
input: "training/RMSprop/zeros_1/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/Variable_1"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 60
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/Variable_1/Assign"
op: "Assign"
input: "training/RMSprop/Variable_1"
input: "training/RMSprop/zeros_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_1"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/Variable_1/read"
op: "Identity"
input: "training/RMSprop/Variable_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_1"
}
}
}
}
node {
name: "training/RMSprop/zeros_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 60
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Variable_2"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 60
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/Variable_2/Assign"
op: "Assign"
input: "training/RMSprop/Variable_2"
input: "training/RMSprop/zeros_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_2"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/Variable_2/read"
op: "Identity"
input: "training/RMSprop/Variable_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_2"
}
}
}
}
node {
name: "training/RMSprop/zeros_3"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
dim {
size: 1
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Variable_3"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 1
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/Variable_3/Assign"
op: "Assign"
input: "training/RMSprop/Variable_3"
input: "training/RMSprop/zeros_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_3"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/Variable_3/read"
op: "Identity"
input: "training/RMSprop/Variable_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_3"
}
}
}
}
node {
name: "training/RMSprop/zeros_4"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 1
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Variable_4"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 1
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/Variable_4/Assign"
op: "Assign"
input: "training/RMSprop/Variable_4"
input: "training/RMSprop/zeros_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_4"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/Variable_4/read"
op: "Identity"
input: "training/RMSprop/Variable_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_4"
}
}
}
}
node {
name: "training/RMSprop/AssignAdd/value"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT64
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT64
tensor_shape {
}
int64_val: 1
}
}
}
}
node {
name: "training/RMSprop/AssignAdd"
op: "AssignAdd"
input: "RMSprop/iterations"
input: "training/RMSprop/AssignAdd/value"
attr {
key: "T"
value {
type: DT_INT64
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/iterations"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
}
node {
name: "training/RMSprop/mul"
op: "Mul"
input: "RMSprop/rho/read"
input: "training/RMSprop/Variable/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/sub"
op: "Sub"
input: "training/RMSprop/sub/x"
input: "RMSprop/rho/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Square"
op: "Square"
input: "training/RMSprop/gradients/AddN_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/mul_1"
op: "Mul"
input: "training/RMSprop/sub"
input: "training/RMSprop/Square"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add"
op: "Add"
input: "training/RMSprop/mul"
input: "training/RMSprop/mul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign"
op: "Assign"
input: "training/RMSprop/Variable"
input: "training/RMSprop/add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_2"
op: "Mul"
input: "RMSprop/lr/read"
input: "training/RMSprop/gradients/AddN_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Const_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: inf
}
}
}
}
node {
name: "training/RMSprop/clip_by_value/Minimum"
op: "Minimum"
input: "training/RMSprop/add"
input: "training/RMSprop/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/clip_by_value"
op: "Maximum"
input: "training/RMSprop/clip_by_value/Minimum"
input: "training/RMSprop/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Sqrt"
op: "Sqrt"
input: "training/RMSprop/clip_by_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_1/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "training/RMSprop/add_1"
op: "Add"
input: "training/RMSprop/Sqrt"
input: "training/RMSprop/add_1/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/truediv"
op: "RealDiv"
input: "training/RMSprop/mul_2"
input: "training/RMSprop/add_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_1"
op: "Sub"
input: "net/kernel/read"
input: "training/RMSprop/truediv"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_1"
op: "Assign"
input: "net/kernel"
input: "training/RMSprop/sub_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/kernel"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_3"
op: "Mul"
input: "RMSprop/rho/read"
input: "training/RMSprop/Variable_1/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_2/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/sub_2"
op: "Sub"
input: "training/RMSprop/sub_2/x"
input: "RMSprop/rho/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Square_1"
op: "Square"
input: "training/RMSprop/gradients/AddN_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/mul_4"
op: "Mul"
input: "training/RMSprop/sub_2"
input: "training/RMSprop/Square_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_2"
op: "Add"
input: "training/RMSprop/mul_3"
input: "training/RMSprop/mul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_2"
op: "Assign"
input: "training/RMSprop/Variable_1"
input: "training/RMSprop/add_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_1"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_5"
op: "Mul"
input: "RMSprop/lr/read"
input: "training/RMSprop/gradients/AddN_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Const_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Const_3"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: inf
}
}
}
}
node {
name: "training/RMSprop/clip_by_value_1/Minimum"
op: "Minimum"
input: "training/RMSprop/add_2"
input: "training/RMSprop/Const_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/clip_by_value_1"
op: "Maximum"
input: "training/RMSprop/clip_by_value_1/Minimum"
input: "training/RMSprop/Const_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Sqrt_1"
op: "Sqrt"
input: "training/RMSprop/clip_by_value_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_3/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "training/RMSprop/add_3"
op: "Add"
input: "training/RMSprop/Sqrt_1"
input: "training/RMSprop/add_3/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/truediv_1"
op: "RealDiv"
input: "training/RMSprop/mul_5"
input: "training/RMSprop/add_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_3"
op: "Sub"
input: "net/recurrent_kernel/read"
input: "training/RMSprop/truediv_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_3"
op: "Assign"
input: "net/recurrent_kernel"
input: "training/RMSprop/sub_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/recurrent_kernel"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_6"
op: "Mul"
input: "RMSprop/rho/read"
input: "training/RMSprop/Variable_2/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_4/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/sub_4"
op: "Sub"
input: "training/RMSprop/sub_4/x"
input: "RMSprop/rho/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Square_2"
op: "Square"
input: "training/RMSprop/gradients/AddN_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/mul_7"
op: "Mul"
input: "training/RMSprop/sub_4"
input: "training/RMSprop/Square_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_4"
op: "Add"
input: "training/RMSprop/mul_6"
input: "training/RMSprop/mul_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_4"
op: "Assign"
input: "training/RMSprop/Variable_2"
input: "training/RMSprop/add_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_2"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_8"
op: "Mul"
input: "RMSprop/lr/read"
input: "training/RMSprop/gradients/AddN_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Const_4"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Const_5"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: inf
}
}
}
}
node {
name: "training/RMSprop/clip_by_value_2/Minimum"
op: "Minimum"
input: "training/RMSprop/add_4"
input: "training/RMSprop/Const_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/clip_by_value_2"
op: "Maximum"
input: "training/RMSprop/clip_by_value_2/Minimum"
input: "training/RMSprop/Const_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Sqrt_2"
op: "Sqrt"
input: "training/RMSprop/clip_by_value_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_5/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "training/RMSprop/add_5"
op: "Add"
input: "training/RMSprop/Sqrt_2"
input: "training/RMSprop/add_5/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/truediv_2"
op: "RealDiv"
input: "training/RMSprop/mul_8"
input: "training/RMSprop/add_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_5"
op: "Sub"
input: "net/bias/read"
input: "training/RMSprop/truediv_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_5"
op: "Assign"
input: "net/bias"
input: "training/RMSprop/sub_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/bias"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_9"
op: "Mul"
input: "RMSprop/rho/read"
input: "training/RMSprop/Variable_3/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_6/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/sub_6"
op: "Sub"
input: "training/RMSprop/sub_6/x"
input: "RMSprop/rho/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Square_3"
op: "Square"
input: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/mul_10"
op: "Mul"
input: "training/RMSprop/sub_6"
input: "training/RMSprop/Square_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_6"
op: "Add"
input: "training/RMSprop/mul_9"
input: "training/RMSprop/mul_10"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_6"
op: "Assign"
input: "training/RMSprop/Variable_3"
input: "training/RMSprop/add_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_3"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_11"
op: "Mul"
input: "RMSprop/lr/read"
input: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Const_6"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Const_7"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: inf
}
}
}
}
node {
name: "training/RMSprop/clip_by_value_3/Minimum"
op: "Minimum"
input: "training/RMSprop/add_6"
input: "training/RMSprop/Const_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/clip_by_value_3"
op: "Maximum"
input: "training/RMSprop/clip_by_value_3/Minimum"
input: "training/RMSprop/Const_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Sqrt_3"
op: "Sqrt"
input: "training/RMSprop/clip_by_value_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_7/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "training/RMSprop/add_7"
op: "Add"
input: "training/RMSprop/Sqrt_3"
input: "training/RMSprop/add_7/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/truediv_3"
op: "RealDiv"
input: "training/RMSprop/mul_11"
input: "training/RMSprop/add_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_7"
op: "Sub"
input: "dense_1/kernel/read"
input: "training/RMSprop/truediv_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_7"
op: "Assign"
input: "dense_1/kernel"
input: "training/RMSprop/sub_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/kernel"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_12"
op: "Mul"
input: "RMSprop/rho/read"
input: "training/RMSprop/Variable_4/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_8/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/sub_8"
op: "Sub"
input: "training/RMSprop/sub_8/x"
input: "RMSprop/rho/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Square_4"
op: "Square"
input: "training/RMSprop/gradients/dense_1/BiasAdd_grad/BiasAddGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/mul_13"
op: "Mul"
input: "training/RMSprop/sub_8"
input: "training/RMSprop/Square_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_8"
op: "Add"
input: "training/RMSprop/mul_12"
input: "training/RMSprop/mul_13"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_8"
op: "Assign"
input: "training/RMSprop/Variable_4"
input: "training/RMSprop/add_8"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_4"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_14"
op: "Mul"
input: "RMSprop/lr/read"
input: "training/RMSprop/gradients/dense_1/BiasAdd_grad/BiasAddGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Const_8"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Const_9"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: inf
}
}
}
}
node {
name: "training/RMSprop/clip_by_value_4/Minimum"
op: "Minimum"
input: "training/RMSprop/add_8"
input: "training/RMSprop/Const_9"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/clip_by_value_4"
op: "Maximum"
input: "training/RMSprop/clip_by_value_4/Minimum"
input: "training/RMSprop/Const_8"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Sqrt_4"
op: "Sqrt"
input: "training/RMSprop/clip_by_value_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_9/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "training/RMSprop/add_9"
op: "Add"
input: "training/RMSprop/Sqrt_4"
input: "training/RMSprop/add_9/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/truediv_4"
op: "RealDiv"
input: "training/RMSprop/mul_14"
input: "training/RMSprop/add_9"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_9"
op: "Sub"
input: "dense_1/bias/read"
input: "training/RMSprop/truediv_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_9"
op: "Assign"
input: "dense_1/bias"
input: "training/RMSprop/sub_9"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/bias"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/group_deps"
op: "NoOp"
input: "^loss/mul"
input: "^metrics/acc/Mean_1"
input: "^training/RMSprop/Assign"
input: "^training/RMSprop/AssignAdd"
input: "^training/RMSprop/Assign_1"
input: "^training/RMSprop/Assign_2"
input: "^training/RMSprop/Assign_3"
input: "^training/RMSprop/Assign_4"
input: "^training/RMSprop/Assign_5"
input: "^training/RMSprop/Assign_6"
input: "^training/RMSprop/Assign_7"
input: "^training/RMSprop/Assign_8"
input: "^training/RMSprop/Assign_9"
}
node {
name: "IsVariableInitialized_5"
op: "IsVariableInitialized"
input: "RMSprop/lr"
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/lr"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_6"
op: "IsVariableInitialized"
input: "RMSprop/rho"
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/rho"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_7"
op: "IsVariableInitialized"
input: "RMSprop/decay"
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/decay"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_8"
op: "IsVariableInitialized"
input: "RMSprop/iterations"
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/iterations"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT64
}
}
}
node {
name: "IsVariableInitialized_9"
op: "IsVariableInitialized"
input: "training/RMSprop/Variable"
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_10"
op: "IsVariableInitialized"
input: "training/RMSprop/Variable_1"
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_11"
op: "IsVariableInitialized"
input: "training/RMSprop/Variable_2"
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_12"
op: "IsVariableInitialized"
input: "training/RMSprop/Variable_3"
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_13"
op: "IsVariableInitialized"
input: "training/RMSprop/Variable_4"
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "init_1"
op: "NoOp"
input: "^RMSprop/decay/Assign"
input: "^RMSprop/iterations/Assign"
input: "^RMSprop/lr/Assign"
input: "^RMSprop/rho/Assign"
input: "^training/RMSprop/Variable/Assign"
input: "^training/RMSprop/Variable_1/Assign"
input: "^training/RMSprop/Variable_2/Assign"
input: "^training/RMSprop/Variable_3/Assign"
input: "^training/RMSprop/Variable_4/Assign"
}
node {
name: "Placeholder_5"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 13
}
dim {
size: 60
}
}
}
}
}
node {
name: "Assign_5"
op: "Assign"
input: "training/RMSprop/Variable"
input: "Placeholder_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_6"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 60
}
}
}
}
}
node {
name: "Assign_6"
op: "Assign"
input: "training/RMSprop/Variable_1"
input: "Placeholder_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_1"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_7"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 60
}
}
}
}
}
node {
name: "Assign_7"
op: "Assign"
input: "training/RMSprop/Variable_2"
input: "Placeholder_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_2"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_8"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 1
}
}
}
}
}
node {
name: "Assign_8"
op: "Assign"
input: "training/RMSprop/Variable_3"
input: "Placeholder_8"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_3"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_9"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 1
}
}
}
}
}
node {
name: "Assign_9"
op: "Assign"
input: "training/RMSprop/Variable_4"
input: "Placeholder_9"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_4"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "net_output"
op: "Identity"
input: "dense_1/Sigmoid"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
versions {
producer: 27
}