Maitre_yoda_models/yoda5.pbtxt

28182 lines
468 KiB
Plaintext

node {
name: "net_input"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: -1
}
dim {
size: 29
}
dim {
size: 13
}
}
}
}
}
node {
name: "net/random_uniform/shape"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\r\000\000\000<\000\000\000"
}
}
}
}
node {
name: "net/random_uniform/min"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: -0.2866911
}
}
}
}
node {
name: "net/random_uniform/max"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2866911
}
}
}
}
node {
name: "net/random_uniform/RandomUniform"
op: "RandomUniform"
input: "net/random_uniform/shape"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "seed"
value {
i: 87654321
}
}
attr {
key: "seed2"
value {
i: 2881382
}
}
}
node {
name: "net/random_uniform/sub"
op: "Sub"
input: "net/random_uniform/max"
input: "net/random_uniform/min"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/random_uniform/mul"
op: "Mul"
input: "net/random_uniform/RandomUniform"
input: "net/random_uniform/sub"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/random_uniform"
op: "Add"
input: "net/random_uniform/mul"
input: "net/random_uniform/min"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/kernel"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 13
}
dim {
size: 60
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "net/kernel/Assign"
op: "Assign"
input: "net/kernel"
input: "net/random_uniform"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/kernel"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "net/kernel/read"
op: "Identity"
input: "net/kernel"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/kernel"
}
}
}
}
node {
name: "net/recurrent_kernel/initial_value"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
dim {
size: 60
}
}
tensor_content: "\365\322\346=\253\263+\276\200\326\t>\364\033U=]\351L\274\337Q\204\275\250\004S>\3329\216>C\017\313\274\016z$\276\005{\271=\320\315\205\275^\177w\276\001\357\307<\234\213\370=\033\2249=\203YF\276\233\322<\276\304\264\324=\226\036]\276\"\225\231=xf\276=6\027&=\002k\214=\267\210\215=h\240\231\275\374\311\227>A*%;\351W\033>\310v\251\275\340\211\225\273\\\203\033>\244\273\242\275\367J\230=\343\272\201<b\035\362\275\217\271\334\275\255\336\016=\213+\360\275\010\023\323=vO\\>M\\\274;\016\016_\276\312.\034\276\376c\242=S\251\307=\303\177\320\274\341\246\203>\334<\276\275\300\236(\2763\277\002\275?\346\361\275\264Nt\275\303K\201\276nTO\275\361\300@=\340\355\216={k=\275\306\3236\275$:\205=\315\220\376\275u\343\035\276\312Py\276X\007\347=\036\342D=\272\031o\275\312\272\211=\252\254\303=\230l\223\274\341\000\272=L!\270=%\206@>\316%\216\274<\251\237\274\025\034\003\276)\226\\=\355A\203\2752\235\336=\014,z\276M\225H=89\203=\022\275\n>\361\304\356<\203+\344\274{\304\026\275)WH<\033\210\351<\020g\300\275\307\267\207>\234(]>\312\316\004=f\333\007>]@+=\242\227\370=\203\271\035=\327\312\026>\0011\356\274\022\214\366<\263>\210\276!\237\324\273\335\'\r\276s\021\n>7\262\267=5\215\226\276\306\272h\276 \210\305\275\277\332\300=\214\212\363=@\311\n;\342\004\263=S\270\224>\000i =\377\202\266=\277\324I=\\s\350\272\264\223#>\310m)=A\253\202>[!\226=\021X\r>\340\263\365\275\355\321\207\275.M\344=;\002\303=\227\030$<\200o\257\275\344\031$\276\251\372\207<\036W\312=\2332V=?fN>\320B\250\275\306\314F>1!-\276\227\032\250<.\252\332\274\314\rE>9\017\322\272\001H\363<\223\313\300\275\371g\273\276\307&\356\274\244\341\010\276\316\214\226<j\035\353\275e\010\367<\002\367\372=\021J7\275]1\220\275fcu\274.\356\324=\365>\230=V\262%>\352B\336<\307^\242=T\354\201\275\007Yo=nPQ\276\3666\235=\314\013\335\275\225w\005\276\355I\261\275\220o\273\275\365\036\006\273B-\245\275\202\003o>\311\230\321\275\336\262\313=\005l\243<\303Xn\2750*\266>\351+8\276\177\205\013\2768*\357\274c\340\003\276F:\224>\232\010^\275\274\201Y\276g\001\300\273m\223-=S\373\237>V\376\272\275\266\303\031\275\336\215A\276\004\316\"<\207v\033=\307\254F\276\207y\360\273\336;\334\27567-\276j3\241\273l{9\276\337\t\236\274\025\344\202\276\265\020\223>w\246\t\274\370u\003>\267\317\311=\331\351\202\275\002j\373=OVE\274\273>\246=\t}\013\275vR%\275\247S\320\275\252\344\212=Eh\244=O\000\000>\227F\240\275\261\016\232=\007\"!\275)\350~>\213B6>\001?|\2740\230H>\203(\262\274\236L<\275\244\331\206\276\3538q\276\206\372\304\274\006\356\260\275E}\017>RM\251=\270P\213=\017[{\273a\231Z\276\201\310\024<z\3767>\321\340\037>\346\225\352=}\"\021\276\255V\272=\300\326i\275\237a\023\276V\246\203=8\261\006\276\271\2475\275[\254\343<#}E<tlT<\204\276\254\275\233\016g\276\314b|=\030r\241\273\001\351\245\276k\257\022>2s\302=\0053\\\275e\251<>+ \200\275\252u+>\227\302\223\275\250|\204<^r:>\302\232\364=\322;7<\254\361Z\275]\240\003>\236{#\275m\035Q=\367\360\272\274\313\014f=h\230\311\2742\335\335\274,\303\217=M\362\267\275\236\352\232\275\346`\332<\327\227\023>/D9\275\311]L=\312\302\212>e\321+>\370-\350\275\037r2\276\315\353\365\275Vmh=\220lT\275s.#\276\031P\253=Bo\352\274\374\274c\276Hl\201=<\300\220>\344\317\311=`zk\275~h\242=\035\017\274\275\327\272\014>\305J:\276\210\004\215<r9X\276x\252\362=9\"T>\242\307$\276\247\340\013\275\000\325\263=v`F>oF\320=\272L\345\275\005L\377=\332\207\232\275}\235\340:Wc\023>Y\375\251=iJH\276\034\016\245=vU\344<[#\177>OrE\2743\304\037\276x\375H\276\013/\247=\234\215\257<\021\n\244\275zi\200\276\264N\014=\303\224\304\275\204\275%\276\242\310o=\022\227\027>\302\027w\275\310XM\276\\T\177\273\200 V=s\305\347\275\212q\202=\tQ\220<\307*W>\234\204\264\275\240K;\2719\013\006\276M6\256=\263\312=>\345\251\372=\355\rY>\217\261Z\274u]\\=\372\333+\275\333D\016\276-\262*\276lu\323=\037RV\276\256PK>\275\224\246>\322\005\216\275B\251g\276\323\201\202\2745V\365=\340\346\257\2759` >\002\374(>n\246i\274$\367]=2\257\034\275\304\260\343\275U$\256=\311\022\031=$6\356\274+6^\271N\331)>\234O:\276\225%\240=w\266>\276\324q\321=\000z\014\274\23316>R\213\364=\013\022\014=\003\2046>\306{\210\275@\335M>\311fP\276\207\037$>}\001\336\275!\361\310\275\2245\215=\231K\'\276\245f\237\2744\310N>\007Oy=\317G\256>[\323\262\275\241\253?\276\273]\023\276#\315\\\275y\337\342<$\234\360\275\233\"(\276\245g\033>\320\337\342=FH\024\275b\\D>\323\276\315\274\262\006\027>\362\322\234\274X*\230= \300\023\275/\347\325;\360\257/\276\256.\037>\\\275\216\275\261\373\303\274v\375Y<]\337\200\275\030R\026>\234\347I>9\361\302\275\031\344\217=\"\236h\275\340\323\313=\213=C\275\327)\204\275\363\272\222=\215\004\027<\252\2379\2763\321\016\276\272\333;\276D\274\201=P\256\022\276\360n\223\276\350^\177;\265\032\010=;\334\224=\r\376G\276m\227\333<\207\373\024>\376\022\n>J\245\270;f\234K\276X\2661\276|^\000=\210\305t\274#\307\032\275E6\216<\332\355Y\2757\314\233=\271\226w\276\266\216\225\275\002\006l>\033\220\234=\204s\013>\360\206\261=\250/\021=\355\346b>\307T\215=\024\212\322\275 \362;=\300~\201\275\240o\013\276\003\267\241=2\370\033>\006\302\204\274LBX=\337\351\245\275\264M\253\275}Z\007\276B8\331\2751\316\030=OW3\276\337\016\225\276\367\214r=\'\\C=\255\326\037>Z&F\274\220\3566=\370\341\\>\345a\340;\033\017\"\276!!q>\007&\212=\357l\352\274k3\030=I\t\362\275\\N\017>\327`\233\274\227\314\003>\006\372`\276\320?0\276u %>\210\035\274\275M\240G>\001h\365\275\376\340\256\275v\371\024>\311\353S\275.\211-=\236\200\035=\254\023\326=\342\027I\275B\023\267\274\220\206\303>L\252z=LW\325\275P\322\225>\267\254\003=\227\345\270<4\221\007=\037\273\211\276\026q\237\276\244\321\233=\254\347\\=\004\226\365\274n#\264\275\"\376\322\275c\224\266\275\026\027\257=^_6\275\332D\275\272\217\321j\275\361\240\020>\016\031\022>+Hs>\367\215\331\273\014\352:\276\030\3014>\317\022\036>\231b\013=s\364\212=G\345\200=\320\316\333\274\023\342\211\275\357\317C=\177\3025\275\302\273\213>\372X\016=K\234_\275\360C`=;n\214\275\006(\006>I\256\350\275 \243\327\275\376\367\223<\323\307\322<}Q&=\304LI\275\236NX\274#\024}\275U3x\276\243:!\276\031\301\274\275\216\371~:2\371\325\274z\260\026=)\275\225\275\222\355\212\2759\343\272\275\356\366\251=kw\233=e.==F\324O\276S\026\375<\014\376H>\262\310\017>\307\207\006>\254U\326\274!\234\365\274E2\361;\373\276+>\'\026N\276 \3434=\003\311[>j\337-\276X\367\206\276#0i>n\013j>\227\235[<p\360\246\274@b\303<$\3436>\275\211\221\274\231\234\253<=ox\275\255\222?>y\313#\275\222E%\275\352-@>\273 \233=A\351;>oO\300:\370S\215\275n\210\'>\322+\212=\323B\220<\212T\"\276\336\033\n\276\227\\\347=\177\275\375\272w\276\244>\021#\033\276\360C\"\276|\326\266<dk\317\275\372\374b\276\301im\276Q\244\235=\317n,=~9\226\274\203\005.\275\377\331@\274\266\242\300=jp\204>\356e\300<yC\204\274M\003\242=<^\305\275\034\322\033>M\2556\276b\321:\273\372v`\275\rS\374<\226\312L=\320\231T\275\037\321\314=y\306\277=\367\356)\275\255\206\342\275\277\224g\276\252\363\273=\032:@\275`\241\033\276\203\246\005>2M\316\274m\216\265<\351\317x\274\305\320\346=\014q\262<qCM>1\017\352\274]4O\276\205\343\273\2754q\317=*\355\200\275Mc\213\2756\3701\275]\314\332>\272\266\307\275M{\025\2761\300\214=t,\">_r\227=\035\235\020\275\367E\234=\356\251\001>\360\017\370\274*\322\210\274?\327\211>\341\350\216=d\034\376=\351\236N\274\007\250`>a\324\217=\251\230c\276\010o\036>j\251\211\275C\255\027=\020\254\306\2755\024\'>\215mn=\024I[>e\252\322;c\270\240=S\023\202\276\357=\342\275\252\255\212\275\024\314E\276\014\320D=1\314\374\274\374\310\211\275\277L\253\275\267\271\315={Q\'\276j\221K<\252\t\177\275\222\224\214>\317X\271\275#1q\275\017\342\376=+\002\016\274\212]\240<-\361\370=\352\247:=\200B>;\330F\234>\177\033+>\200\333\005>\315.\246=J\254\231\275\207\377C\276>\233O<\2771<=\354\266C\276X\270\322=\334\231\243= \264?\276\336^+\275\254\270\300=\313z\331<\177\271\014=\233\312\332\275\307\371\314=W<r>\212\036{\2765\177h\274\233\205\036\276\374\031\022>j\305\013>\253\315#\275\274`\255<N?\035\274k\252 >\010\033\024\276^{\237\275\356\354$>\233\004\027>\332|\220\275\330\326.>\026<\326=\346\347\n>oAV\276Q\274\032>G\007s\273\3027\276=w\325\304\275\005[\002=\237v\212=\307\334F\275:\030\022><\310\206>3,\033>\177\223\210\276\'\247\203>\234\216_\275)\310=\276\230\330\t>\253\000\200=\004l8\275,\354e\274u<\303\275\301\017 \274c\264x\2758\353\005\276\264k\216>b\276\265\275\215\323?>\371\203\235=_\220\017\275\371\344\320=\327<\222=H\267\334\275\007\201\233=:uw\276\271\036[\275\350[\273=i\303\026\275\255\362\230=#\347*<\305\274\021\276r\262G\276\010;\035<j\202\315\274\365Q4\276\001\225\253\275c\r\372=\260w\226\276ho@<I\r8\276\021\003\252<\005\006\003=\305\310\202:\324\362&\275\002\2234\276m+\251\275\306O\307<\207\344\276;\223\013a\274\001\343\024>\326\215\324\274\275\215\210>\377 \257=\017\320\016\275\214\373\201\275\002v\335=\341\240\262\275m\004\264<\346\220\213=\211\0266\275\363q^\276\275\0046\275>\307\200\275\307\213`\276b@7\276\320}\000\276\035\315\023\276\311\317D\276\370h\322=\\\212\356\274\370\225\023\276Vo\025\276xj\013\276n\"\030\276\252c >\242\016\036\275\306#\005>\230\217B>\233\221\273\275@J\r>1\276\221\275{\034\337\275o\250\017\276\022V\013>G\317\t>\206\265\366<\355\257a>\272\347C<\346)\251=\210\177\235=\361u\000\275k\324.\275\317\240\273\275\225`-\275\277\227E\276\234\236\332<!\353;\276\367\016\242\275\3174\030\276\233\265r\273@\021\264\276\335G\306\275L\322\\\275\242\234J\2757W;=\030\010\021\276[B\311\275\211\274\030=h\340\341=\021y\013\275(=\201>\312G\030\275\177\344\177\276\371Ex\275\333\215\373\274Y[f\275\001\246\207\275q\342G<\311\007@<.\361\321\275Bu$>\253\302O>\237V\215\274\313\351\002>\t_B=\021\311\005\276B\002J>e\362\212=\tD\251\274f\2339>E\340\000=|\277H>\265^\340\275\240\2530>I\034\024\276\210@9>\205b\310=\205x\347\274\226\347\332=WYm>\334\320\342\275$fb\274\301\374T\276\240q\255>G{\313\275BdM;\253\3658\275~\202\000>\252\215\204\275\321\177\336\275\351J\036\275\205\352\243\274\205\231\002\275cvc\276\014\001\017=\225\016\227>\342un:=\367P\275E}\370\274\016,\211=\2649\000=m\267\375\274|\364o\276@_\225\274I>\240>Te\020\276{\207\026>(:\216=\262q\345<\342\216\233\275\"\230\222=\211\364\224\275\034\350\234\275\301p\243\275\323T\242\274]B.>2\263C>\336\255\260=\207\343\212=\355\034U>0t\007\276J\2312<\371\206.\276\315\353(\276=\344Y=\215\031\215\273\222\234\233\2751\352\210\274\3040\215=\2241><ox\030>3\250\216>\312\266\352\275\256\215b>\360R\032\276 \216\032>%\205f>C\353\200\275C\020\315\274a*\275\275\255:\232\275e\002\024\275\216\350F>\257\210\013\275\243v\242<\252\014\203>hWg\275\236\236\312<\2149\347=x\321\234\275W\262\340\274\364\274\004\276-\240\261\276\031a,>\253\025\247\275\332o\226=\025\213\013\275\346\310P\275\3759{=\340\341\007\275?\214\007\275o\301\204>\264\021\370=f\024\231\273g\312\n\274\007\036)\276\333\312|;g\317G\276\247\034\351;\302\233\310=\\\245\205<3.)\276\345\241\250=\325\362;\276+\316s=4\\\006>\353k\321=M\223\036\275\361m0>\010\372\002>\016\177.;&\213\347\275\243\2468\275\356\026r>\233\243u=\0214W=\256\215\312<\251ZR\276-\257.\276C\303\341=\367j\341\275\235f\267\275\361-7;\370\035\215<\257\330\025\276\373q]</<\303\275\336a\276=\312\333C=:\232\325\274_S#\276\223\374\223\275 \316\357\274p\337\320=\257\010\310=\335\262\220=\205_\223>\372S\201\274+\226\274\273\304d\002>F\351B\276\304\023\220\275\221hp>\274\264\003>\340\320\201=\337Q\376\275\225\270:\275\272\362\027=0y\355=(\026\214\275n\263\327=\006\227\250>\247\211\350=/\325\201\276\033b\032>\327(\030\276\014\345\313=\316\356\200>\255\336H\274|\221\306;\246w\274;a\204I>\244\243z<G\'\330\273]\273\341=P\363@\276\357\000v\275\"L\223>\211\314\321<\332\356\327=\376\227\202>\244\364\275<_c\227\273\276\244\023;\342\3658\276\351\240\006=\340q\240\274\267\355D\275\253A\246>\\\266\211=\002\030(=l\2629>\000\023\202>\230\325\024\276$\220\261\275B\\\002\274\304\362B\276\235\201\206>\241\312)=dp4\275\232\337\264;g\r0\274\300\363!\276\225\240\344\275n\201\261\274\221\213\225>\323\251\224<a\237\270\274\366}\212\275\006\247j=\030n\266;\2646\306<\r\361\251=\300d\327\275\255Y\013\276_E\350<\022\366\215\276K\311%>\"w(>fI@=w[\315\274\215\003\227=rnP\275\251\337\020=/Sa\274*\t9\274\335\321b\274\210w\241\275T4W\276i5\211=\212\333!>\000\310q\275\037\351\305=\220\330D\274Y\241\232\275\3674>\276Z\347R9\302\230\207\276\247\035\357\275\212\247\006>\355\016\001>\014z\212\275\223M\242=\nY\242\273\314\220\341<\226\321\226=\222;e<\230\207`\275UD{>VJ)\275o\024<\276\262s\204\275\201\367D\276\252q\333\275p\307N\275\262\002f\276\304\332\241=\346\014\203\276~:\222=\004\342K<\242)\321\275\224\235\216\275\212\254\204\276,-\350;\377\367g\276\233(\026\276\247\242\034\275\336\"x:F\025{\275\267a\343=\201\217l\276\036\272W\276{\007V\276\271\235u=\010\271\351=}\363\376=\030\017\350;K\277<=\306\361\270;f\363D\275y\346\016\276\"rG>_\222J=\177s\314\275\331\237\004\276\203\206\322=\204\237?\2751\344\370;Z\234!\276\341u\250\275o\245\364=t\241\262\2752gM>\020bi\274\332\202\002\276\031\201\307=V\227\373\275\305e\354=\303\3752>\331 #=\361\260k\276\n\3765>\333\221>\276\275k\000=\017\211\254=\265g(>\301I\201>i\016\322=\353\"\276=o\225\252\275\317\\\370\275D\233W\276\031\301\262<\231fa\273``L\275\336\032\212\275\226\204\217=f\245{=\224\274\241=g<U<?\006\242\275\256\201\007\276\023?\n>^\335\243<\302\323b\275j\0301=Otr\276%\265}\275{\3672=\257\346E\276jY\342;/\274J>\035\302\003\276 \300\014\276P8F\272Fk~\275\025\266\"\276\036,\322\274\272dY=\257\261\"\276\352\326\340=\213\307\373=\002V?\276\030\325\364<\321\364\n\275\254\364\347=pB\227\276\365H\205>*9\213\275\230\273\262\275\346\363\024>\006d\031>J\326\023>"
}
}
}
}
node {
name: "net/recurrent_kernel"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 60
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "net/recurrent_kernel/Assign"
op: "Assign"
input: "net/recurrent_kernel"
input: "net/recurrent_kernel/initial_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/recurrent_kernel"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "net/recurrent_kernel/read"
op: "Identity"
input: "net/recurrent_kernel"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/recurrent_kernel"
}
}
}
}
node {
name: "net/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 60
}
}
float_val: 0.0
}
}
}
}
node {
name: "net/bias"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 60
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "net/bias/Assign"
op: "Assign"
input: "net/bias"
input: "net/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/bias"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "net/bias/read"
op: "Identity"
input: "net/bias"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/bias"
}
}
}
}
node {
name: "net/strided_slice/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\000\000\000\000"
}
}
}
}
node {
name: "net/strided_slice/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\024\000\000\000"
}
}
}
}
node {
name: "net/strided_slice/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "net/strided_slice"
op: "StridedSlice"
input: "net/kernel/read"
input: "net/strided_slice/stack"
input: "net/strided_slice/stack_1"
input: "net/strided_slice/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 3
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_1/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\000\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_1/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\024\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_1/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_1"
op: "StridedSlice"
input: "net/recurrent_kernel/read"
input: "net/strided_slice_1/stack"
input: "net/strided_slice_1/stack_1"
input: "net/strided_slice_1/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 3
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_2/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\024\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_2/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000(\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_2/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_2"
op: "StridedSlice"
input: "net/kernel/read"
input: "net/strided_slice_2/stack"
input: "net/strided_slice_2/stack_1"
input: "net/strided_slice_2/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_3/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\024\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_3/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000(\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_3/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_3"
op: "StridedSlice"
input: "net/recurrent_kernel/read"
input: "net/strided_slice_3/stack"
input: "net/strided_slice_3/stack_1"
input: "net/strided_slice_3/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_4/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000(\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_4/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\000\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_4/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_4"
op: "StridedSlice"
input: "net/kernel/read"
input: "net/strided_slice_4/stack"
input: "net/strided_slice_4/stack_1"
input: "net/strided_slice_4/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 3
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_5/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000(\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_5/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\000\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_5/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "net/strided_slice_5"
op: "StridedSlice"
input: "net/recurrent_kernel/read"
input: "net/strided_slice_5/stack"
input: "net/strided_slice_5/stack_1"
input: "net/strided_slice_5/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 3
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_6/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/strided_slice_6/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 20
}
}
}
}
node {
name: "net/strided_slice_6/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_6"
op: "StridedSlice"
input: "net/bias/read"
input: "net/strided_slice_6/stack"
input: "net/strided_slice_6/stack_1"
input: "net/strided_slice_6/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_7/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 20
}
}
}
}
node {
name: "net/strided_slice_7/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 40
}
}
}
}
node {
name: "net/strided_slice_7/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_7"
op: "StridedSlice"
input: "net/bias/read"
input: "net/strided_slice_7/stack"
input: "net/strided_slice_7/stack_1"
input: "net/strided_slice_7/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/strided_slice_8/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 40
}
}
}
}
node {
name: "net/strided_slice_8/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/strided_slice_8/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_8"
op: "StridedSlice"
input: "net/bias/read"
input: "net/strided_slice_8/stack"
input: "net/strided_slice_8/stack_1"
input: "net/strided_slice_8/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "net/zeros_like"
op: "ZerosLike"
input: "net_input"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/Sum/reduction_indices"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\002\000\000\000"
}
}
}
}
node {
name: "net/Sum"
op: "Sum"
input: "net/zeros_like"
input: "net/Sum/reduction_indices"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "net/ExpandDims/dim"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "net/ExpandDims"
op: "ExpandDims"
input: "net/Sum"
input: "net/ExpandDims/dim"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tdim"
value {
type: DT_INT32
}
}
}
node {
name: "net/Tile/multiples"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\024\000\000\000"
}
}
}
}
node {
name: "net/Tile"
op: "Tile"
input: "net/ExpandDims"
input: "net/Tile/multiples"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tmultiples"
value {
type: DT_INT32
}
}
}
node {
name: "net/transpose/perm"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 3
}
}
tensor_content: "\001\000\000\000\000\000\000\000\002\000\000\000"
}
}
}
}
node {
name: "net/transpose"
op: "Transpose"
input: "net_input"
input: "net/transpose/perm"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tperm"
value {
type: DT_INT32
}
}
}
node {
name: "net/Shape"
op: "Shape"
input: "net/transpose"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "net/strided_slice_9/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/strided_slice_9/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_9/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_9"
op: "StridedSlice"
input: "net/Shape"
input: "net/strided_slice_9/stack"
input: "net/strided_slice_9/stack_1"
input: "net/strided_slice_9/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 1
}
}
}
node {
name: "net/strided_slice_10/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/strided_slice_10/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_10/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_10"
op: "StridedSlice"
input: "net/transpose"
input: "net/strided_slice_10/stack"
input: "net/strided_slice_10/stack_1"
input: "net/strided_slice_10/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 1
}
}
}
node {
name: "net/Shape_1"
op: "Shape"
input: "net/strided_slice_10"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "net/strided_slice_11/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: -1
}
}
}
}
node {
name: "net/strided_slice_11/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/strided_slice_11/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_11"
op: "StridedSlice"
input: "net/Shape_1"
input: "net/strided_slice_11/stack"
input: "net/strided_slice_11/stack_1"
input: "net/strided_slice_11/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 1
}
}
}
node {
name: "net/Shape_2"
op: "Shape"
input: "net/strided_slice_10"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "net/strided_slice_12/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/strided_slice_12/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_12/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/strided_slice_12"
op: "StridedSlice"
input: "net/Shape_2"
input: "net/strided_slice_12/stack"
input: "net/strided_slice_12/stack_1"
input: "net/strided_slice_12/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 1
}
}
}
node {
name: "net/ones/mul"
op: "Mul"
input: "net/strided_slice_12"
input: "net/strided_slice_11"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/ones/Less/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1000
}
}
}
}
node {
name: "net/ones/Less"
op: "Less"
input: "net/ones/mul"
input: "net/ones/Less/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/ones/packed"
op: "Pack"
input: "net/strided_slice_12"
input: "net/strided_slice_11"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "axis"
value {
i: 0
}
}
}
node {
name: "net/ones/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/ones"
op: "Fill"
input: "net/ones/packed"
input: "net/ones/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "net/mul"
op: "Mul"
input: "net/strided_slice_10"
input: "net/ones"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_1"
op: "Mul"
input: "net/strided_slice_10"
input: "net/ones"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_2"
op: "Mul"
input: "net/strided_slice_10"
input: "net/ones"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/MatMul"
op: "MatMul"
input: "net/mul"
input: "net/strided_slice"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/MatMul_1"
op: "MatMul"
input: "net/mul_1"
input: "net/strided_slice_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/MatMul_2"
op: "MatMul"
input: "net/mul_2"
input: "net/strided_slice_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/BiasAdd"
op: "BiasAdd"
input: "net/MatMul"
input: "net/strided_slice_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "net/BiasAdd_1"
op: "BiasAdd"
input: "net/MatMul_1"
input: "net/strided_slice_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "net/BiasAdd_2"
op: "BiasAdd"
input: "net/MatMul_2"
input: "net/strided_slice_8"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "net/MatMul_3"
op: "MatMul"
input: "net/Tile"
input: "net/strided_slice_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/MatMul_4"
op: "MatMul"
input: "net/Tile"
input: "net/strided_slice_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/add"
op: "Add"
input: "net/BiasAdd"
input: "net/MatMul_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_3/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2
}
}
}
}
node {
name: "net/mul_3"
op: "Mul"
input: "net/mul_3/x"
input: "net/add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/add_1/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.5
}
}
}
}
node {
name: "net/add_1"
op: "Add"
input: "net/mul_3"
input: "net/add_1/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/Const_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "net/Const_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/clip_by_value/Minimum"
op: "Minimum"
input: "net/add_1"
input: "net/Const_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/clip_by_value"
op: "Maximum"
input: "net/clip_by_value/Minimum"
input: "net/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/add_2"
op: "Add"
input: "net/BiasAdd_1"
input: "net/MatMul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_4/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2
}
}
}
}
node {
name: "net/mul_4"
op: "Mul"
input: "net/mul_4/x"
input: "net/add_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/add_3/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.5
}
}
}
}
node {
name: "net/add_3"
op: "Add"
input: "net/mul_4"
input: "net/add_3/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/Const_3"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "net/Const_4"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/clip_by_value_1/Minimum"
op: "Minimum"
input: "net/add_3"
input: "net/Const_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/clip_by_value_1"
op: "Maximum"
input: "net/clip_by_value_1/Minimum"
input: "net/Const_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_5"
op: "Mul"
input: "net/clip_by_value_1"
input: "net/Tile"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/MatMul_5"
op: "MatMul"
input: "net/mul_5"
input: "net/strided_slice_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/add_4"
op: "Add"
input: "net/BiasAdd_2"
input: "net/MatMul_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_6"
op: "Mul"
input: "net/clip_by_value"
input: "net/Tile"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/sub/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/sub"
op: "Sub"
input: "net/sub/x"
input: "net/clip_by_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/mul_7"
op: "Mul"
input: "net/sub"
input: "net/add_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/add_5"
op: "Add"
input: "net/mul_6"
input: "net/mul_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/TensorArray"
op: "TensorArrayV3"
input: "net/strided_slice_9"
attr {
key: "clear_after_read"
value {
b: true
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "dynamic_size"
value {
b: false
}
}
attr {
key: "element_shape"
value {
shape {
unknown_rank: true
}
}
}
attr {
key: "identical_element_shapes"
value {
b: true
}
}
attr {
key: "tensor_array_name"
value {
s: "output_ta"
}
}
}
node {
name: "net/TensorArray_1"
op: "TensorArrayV3"
input: "net/strided_slice_9"
attr {
key: "clear_after_read"
value {
b: true
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "dynamic_size"
value {
b: false
}
}
attr {
key: "element_shape"
value {
shape {
unknown_rank: true
}
}
}
attr {
key: "identical_element_shapes"
value {
b: true
}
}
attr {
key: "tensor_array_name"
value {
s: "input_ta"
}
}
}
node {
name: "net/TensorArrayUnstack/Shape"
op: "Shape"
input: "net/transpose"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "net/TensorArrayUnstack/strided_slice/stack"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "net/TensorArrayUnstack/strided_slice/stack_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/TensorArrayUnstack/strided_slice/stack_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "net/TensorArrayUnstack/strided_slice"
op: "StridedSlice"
input: "net/TensorArrayUnstack/Shape"
input: "net/TensorArrayUnstack/strided_slice/stack"
input: "net/TensorArrayUnstack/strided_slice/stack_1"
input: "net/TensorArrayUnstack/strided_slice/stack_2"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 1
}
}
}
node {
name: "net/TensorArrayUnstack/range/start"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 0
}
}
}
}
node {
name: "net/TensorArrayUnstack/range/delta"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "net/TensorArrayUnstack/range"
op: "Range"
input: "net/TensorArrayUnstack/range/start"
input: "net/TensorArrayUnstack/strided_slice"
input: "net/TensorArrayUnstack/range/delta"
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
}
node {
name: "net/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3"
op: "TensorArrayScatterV3"
input: "net/TensorArray_1"
input: "net/TensorArrayUnstack/range"
input: "net/transpose"
input: "net/TensorArray_1:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/transpose"
}
}
}
}
node {
name: "net/time"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 0
}
}
}
}
node {
name: "net/while/Enter"
op: "Enter"
input: "net/time"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/Enter_1"
op: "Enter"
input: "net/TensorArray:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/Enter_2"
op: "Enter"
input: "net/Tile"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/Merge"
op: "Merge"
input: "net/while/Enter"
input: "net/while/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/while/Merge_1"
op: "Merge"
input: "net/while/Enter_1"
input: "net/while/NextIteration_1"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Merge_2"
op: "Merge"
input: "net/while/Enter_2"
input: "net/while/NextIteration_2"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Less"
op: "Less"
input: "net/while/Merge"
input: "net/while/Less/Enter"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/while/Less/Enter"
op: "Enter"
input: "net/strided_slice_9"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/LoopCond"
op: "LoopCond"
input: "net/while/Less"
}
node {
name: "net/while/Switch"
op: "Switch"
input: "net/while/Merge"
input: "net/while/LoopCond"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge"
}
}
}
}
node {
name: "net/while/Switch_1"
op: "Switch"
input: "net/while/Merge_1"
input: "net/while/LoopCond"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_1"
}
}
}
}
node {
name: "net/while/Switch_2"
op: "Switch"
input: "net/while/Merge_2"
input: "net/while/LoopCond"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_2"
}
}
}
}
node {
name: "net/while/Identity"
op: "Identity"
input: "net/while/Switch:1"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/while/Identity_1"
op: "Identity"
input: "net/while/Switch_1:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Identity_2"
op: "Identity"
input: "net/while/Switch_2:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/TensorArrayReadV3"
op: "TensorArrayReadV3"
input: "net/while/TensorArrayReadV3/Enter"
input: "net/while/Identity"
input: "net/while/TensorArrayReadV3/Enter_1"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/TensorArrayReadV3/Enter"
op: "Enter"
input: "net/TensorArray_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/TensorArrayReadV3/Enter_1"
op: "Enter"
input: "net/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/mul"
op: "Mul"
input: "net/while/TensorArrayReadV3"
input: "net/while/mul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul/Enter"
op: "Enter"
input: "net/ones"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/mul_1"
op: "Mul"
input: "net/while/TensorArrayReadV3"
input: "net/while/mul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul_2"
op: "Mul"
input: "net/while/TensorArrayReadV3"
input: "net/while/mul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/MatMul"
op: "MatMul"
input: "net/while/mul"
input: "net/while/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/while/MatMul/Enter"
op: "Enter"
input: "net/strided_slice"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/MatMul_1"
op: "MatMul"
input: "net/while/mul_1"
input: "net/while/MatMul_1/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/while/MatMul_1/Enter"
op: "Enter"
input: "net/strided_slice_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/MatMul_2"
op: "MatMul"
input: "net/while/mul_2"
input: "net/while/MatMul_2/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/while/MatMul_2/Enter"
op: "Enter"
input: "net/strided_slice_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/BiasAdd"
op: "BiasAdd"
input: "net/while/MatMul"
input: "net/while/BiasAdd/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "net/while/BiasAdd/Enter"
op: "Enter"
input: "net/strided_slice_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/BiasAdd_1"
op: "BiasAdd"
input: "net/while/MatMul_1"
input: "net/while/BiasAdd_1/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "net/while/BiasAdd_1/Enter"
op: "Enter"
input: "net/strided_slice_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/BiasAdd_2"
op: "BiasAdd"
input: "net/while/MatMul_2"
input: "net/while/BiasAdd_2/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "net/while/BiasAdd_2/Enter"
op: "Enter"
input: "net/strided_slice_8"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/MatMul_3"
op: "MatMul"
input: "net/while/Identity_2"
input: "net/while/MatMul_3/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/while/MatMul_3/Enter"
op: "Enter"
input: "net/strided_slice_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/MatMul_4"
op: "MatMul"
input: "net/while/Identity_2"
input: "net/while/MatMul_4/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/while/MatMul_4/Enter"
op: "Enter"
input: "net/strided_slice_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/add"
op: "Add"
input: "net/while/BiasAdd"
input: "net/while/MatMul_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul_3/x"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2
}
}
}
}
node {
name: "net/while/mul_3"
op: "Mul"
input: "net/while/mul_3/x"
input: "net/while/add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/add_1/y"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.5
}
}
}
}
node {
name: "net/while/add_1"
op: "Add"
input: "net/while/mul_3"
input: "net/while/add_1/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Const"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "net/while/Const_1"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/while/clip_by_value/Minimum"
op: "Minimum"
input: "net/while/add_1"
input: "net/while/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/clip_by_value"
op: "Maximum"
input: "net/while/clip_by_value/Minimum"
input: "net/while/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/add_2"
op: "Add"
input: "net/while/BiasAdd_1"
input: "net/while/MatMul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul_4/x"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2
}
}
}
}
node {
name: "net/while/mul_4"
op: "Mul"
input: "net/while/mul_4/x"
input: "net/while/add_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/add_3/y"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.5
}
}
}
}
node {
name: "net/while/add_3"
op: "Add"
input: "net/while/mul_4"
input: "net/while/add_3/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Const_2"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "net/while/Const_3"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/while/clip_by_value_1/Minimum"
op: "Minimum"
input: "net/while/add_3"
input: "net/while/Const_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/clip_by_value_1"
op: "Maximum"
input: "net/while/clip_by_value_1/Minimum"
input: "net/while/Const_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul_5"
op: "Mul"
input: "net/while/clip_by_value_1"
input: "net/while/Identity_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/MatMul_5"
op: "MatMul"
input: "net/while/mul_5"
input: "net/while/MatMul_5/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "net/while/MatMul_5/Enter"
op: "Enter"
input: "net/strided_slice_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/add_4"
op: "Add"
input: "net/while/BiasAdd_2"
input: "net/while/MatMul_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul_6"
op: "Mul"
input: "net/while/clip_by_value"
input: "net/while/Identity_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/sub/x"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "net/while/sub"
op: "Sub"
input: "net/while/sub/x"
input: "net/while/clip_by_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/mul_7"
op: "Mul"
input: "net/while/sub"
input: "net/while/add_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/add_5"
op: "Add"
input: "net/while/mul_6"
input: "net/while/mul_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/TensorArrayWrite/TensorArrayWriteV3"
op: "TensorArrayWriteV3"
input: "net/while/TensorArrayWrite/TensorArrayWriteV3/Enter"
input: "net/while/Identity"
input: "net/while/add_5"
input: "net/while/Identity_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
}
node {
name: "net/while/TensorArrayWrite/TensorArrayWriteV3/Enter"
op: "Enter"
input: "net/TensorArray"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "net/while/add_6/y"
op: "Const"
input: "^net/while/Identity"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "net/while/add_6"
op: "Add"
input: "net/while/Identity"
input: "net/while/add_6/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/while/NextIteration"
op: "NextIteration"
input: "net/while/add_6"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/while/NextIteration_1"
op: "NextIteration"
input: "net/while/TensorArrayWrite/TensorArrayWriteV3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/NextIteration_2"
op: "NextIteration"
input: "net/while/add_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Exit"
op: "Exit"
input: "net/while/Switch"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/while/Exit_1"
op: "Exit"
input: "net/while/Switch_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/while/Exit_2"
op: "Exit"
input: "net/while/Switch_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/TensorArrayStack/TensorArraySizeV3"
op: "TensorArraySizeV3"
input: "net/TensorArray"
input: "net/while/Exit_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
}
}
}
}
node {
name: "net/TensorArrayStack/range/start"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 0
}
}
}
}
node {
name: "net/TensorArrayStack/range/delta"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "net/TensorArrayStack/range"
op: "Range"
input: "net/TensorArrayStack/range/start"
input: "net/TensorArrayStack/TensorArraySizeV3"
input: "net/TensorArrayStack/range/delta"
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
}
}
}
}
node {
name: "net/TensorArrayStack/TensorArrayGatherV3"
op: "TensorArrayGatherV3"
input: "net/TensorArray"
input: "net/TensorArrayStack/range"
input: "net/while/Exit_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "element_shape"
value {
shape {
dim {
size: -1
}
dim {
size: 20
}
}
}
}
}
node {
name: "net/sub_1/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "net/sub_1"
op: "Sub"
input: "net/while/Exit"
input: "net/sub_1/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "net/TensorArrayReadV3"
op: "TensorArrayReadV3"
input: "net/TensorArray"
input: "net/sub_1"
input: "net/while/Exit_1"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "net/transpose_1/perm"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 3
}
}
tensor_content: "\001\000\000\000\000\000\000\000\002\000\000\000"
}
}
}
}
node {
name: "net/transpose_1"
op: "Transpose"
input: "net/TensorArrayStack/TensorArrayGatherV3"
input: "net/transpose_1/perm"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tperm"
value {
type: DT_INT32
}
}
}
node {
name: "dense_1/random_uniform/shape"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\024\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "dense_1/random_uniform/min"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: -0.5345225
}
}
}
}
node {
name: "dense_1/random_uniform/max"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.5345225
}
}
}
}
node {
name: "dense_1/random_uniform/RandomUniform"
op: "RandomUniform"
input: "dense_1/random_uniform/shape"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "seed"
value {
i: 87654321
}
}
attr {
key: "seed2"
value {
i: 6639574
}
}
}
node {
name: "dense_1/random_uniform/sub"
op: "Sub"
input: "dense_1/random_uniform/max"
input: "dense_1/random_uniform/min"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "dense_1/random_uniform/mul"
op: "Mul"
input: "dense_1/random_uniform/RandomUniform"
input: "dense_1/random_uniform/sub"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "dense_1/random_uniform"
op: "Add"
input: "dense_1/random_uniform/mul"
input: "dense_1/random_uniform/min"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "dense_1/kernel"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 1
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "dense_1/kernel/Assign"
op: "Assign"
input: "dense_1/kernel"
input: "dense_1/random_uniform"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/kernel"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "dense_1/kernel/read"
op: "Identity"
input: "dense_1/kernel"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/kernel"
}
}
}
}
node {
name: "dense_1/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 1
}
}
float_val: 0.0
}
}
}
}
node {
name: "dense_1/bias"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 1
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "dense_1/bias/Assign"
op: "Assign"
input: "dense_1/bias"
input: "dense_1/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/bias"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "dense_1/bias/read"
op: "Identity"
input: "dense_1/bias"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/bias"
}
}
}
}
node {
name: "dense_1/MatMul"
op: "MatMul"
input: "net/TensorArrayReadV3"
input: "dense_1/kernel/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "dense_1/BiasAdd"
op: "BiasAdd"
input: "dense_1/MatMul"
input: "dense_1/bias/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "dense_1/Sigmoid"
op: "Sigmoid"
input: "dense_1/BiasAdd"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "Placeholder"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 13
}
dim {
size: 60
}
}
}
}
}
node {
name: "Assign"
op: "Assign"
input: "net/kernel"
input: "Placeholder"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/kernel"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_1"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 60
}
}
}
}
}
node {
name: "Assign_1"
op: "Assign"
input: "net/recurrent_kernel"
input: "Placeholder_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/recurrent_kernel"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_2"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 60
}
}
}
}
}
node {
name: "Assign_2"
op: "Assign"
input: "net/bias"
input: "Placeholder_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/bias"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_3"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 1
}
}
}
}
}
node {
name: "Assign_3"
op: "Assign"
input: "dense_1/kernel"
input: "Placeholder_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/kernel"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_4"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 1
}
}
}
}
}
node {
name: "Assign_4"
op: "Assign"
input: "dense_1/bias"
input: "Placeholder_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/bias"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "IsVariableInitialized"
op: "IsVariableInitialized"
input: "net/kernel"
attr {
key: "_class"
value {
list {
s: "loc:@net/kernel"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_1"
op: "IsVariableInitialized"
input: "net/recurrent_kernel"
attr {
key: "_class"
value {
list {
s: "loc:@net/recurrent_kernel"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_2"
op: "IsVariableInitialized"
input: "net/bias"
attr {
key: "_class"
value {
list {
s: "loc:@net/bias"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_3"
op: "IsVariableInitialized"
input: "dense_1/kernel"
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/kernel"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_4"
op: "IsVariableInitialized"
input: "dense_1/bias"
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/bias"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "init"
op: "NoOp"
input: "^dense_1/bias/Assign"
input: "^dense_1/kernel/Assign"
input: "^net/bias/Assign"
input: "^net/kernel/Assign"
input: "^net/recurrent_kernel/Assign"
}
node {
name: "RMSprop/lr/initial_value"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.001
}
}
}
}
node {
name: "RMSprop/lr"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "RMSprop/lr/Assign"
op: "Assign"
input: "RMSprop/lr"
input: "RMSprop/lr/initial_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/lr"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "RMSprop/lr/read"
op: "Identity"
input: "RMSprop/lr"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/lr"
}
}
}
}
node {
name: "RMSprop/rho/initial_value"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.9
}
}
}
}
node {
name: "RMSprop/rho"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "RMSprop/rho/Assign"
op: "Assign"
input: "RMSprop/rho"
input: "RMSprop/rho/initial_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/rho"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "RMSprop/rho/read"
op: "Identity"
input: "RMSprop/rho"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/rho"
}
}
}
}
node {
name: "RMSprop/decay/initial_value"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "RMSprop/decay"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "RMSprop/decay/Assign"
op: "Assign"
input: "RMSprop/decay"
input: "RMSprop/decay/initial_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/decay"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "RMSprop/decay/read"
op: "Identity"
input: "RMSprop/decay"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/decay"
}
}
}
}
node {
name: "RMSprop/iterations/initial_value"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT64
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT64
tensor_shape {
}
int64_val: 0
}
}
}
}
node {
name: "RMSprop/iterations"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_INT64
}
}
attr {
key: "shape"
value {
shape {
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "RMSprop/iterations/Assign"
op: "Assign"
input: "RMSprop/iterations"
input: "RMSprop/iterations/initial_value"
attr {
key: "T"
value {
type: DT_INT64
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/iterations"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "RMSprop/iterations/read"
op: "Identity"
input: "RMSprop/iterations"
attr {
key: "T"
value {
type: DT_INT64
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/iterations"
}
}
}
}
node {
name: "dense_1_target"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: -1
}
dim {
size: -1
}
}
}
}
}
node {
name: "dense_1_sample_weights"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: -1
}
}
}
}
}
node {
name: "loss/dense_1_loss/add/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "loss/dense_1_loss/add"
op: "Add"
input: "loss/dense_1_loss/add/x"
input: "dense_1_target"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Neg"
op: "Neg"
input: "loss/dense_1_loss/add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/add_1/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "loss/dense_1_loss/add_1"
op: "Add"
input: "loss/dense_1_loss/add_1/x"
input: "dense_1/Sigmoid"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/add_2/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "loss/dense_1_loss/add_2"
op: "Add"
input: "loss/dense_1_loss/add_1"
input: "loss/dense_1_loss/add_2/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Log"
op: "Log"
input: "loss/dense_1_loss/add_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/mul"
op: "Mul"
input: "loss/dense_1_loss/Neg"
input: "loss/dense_1_loss/Log"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/sub/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "loss/dense_1_loss/sub"
op: "Sub"
input: "loss/dense_1_loss/sub/x"
input: "dense_1_target"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Neg_1"
op: "Neg"
input: "loss/dense_1_loss/sub"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/sub_1/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "loss/dense_1_loss/sub_1"
op: "Sub"
input: "loss/dense_1_loss/sub_1/x"
input: "dense_1/Sigmoid"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/add_3/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "loss/dense_1_loss/add_3"
op: "Add"
input: "loss/dense_1_loss/sub_1"
input: "loss/dense_1_loss/add_3/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Log_1"
op: "Log"
input: "loss/dense_1_loss/add_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/mul_1"
op: "Mul"
input: "loss/dense_1_loss/Neg_1"
input: "loss/dense_1_loss/Log_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "loss/dense_1_loss/Mean"
op: "Mean"
input: "loss/dense_1_loss/mul_1"
input: "loss/dense_1_loss/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "loss/dense_1_loss/mul_2/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.9
}
}
}
}
node {
name: "loss/dense_1_loss/mul_2"
op: "Mul"
input: "loss/dense_1_loss/mul_2/x"
input: "loss/dense_1_loss/Mean"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Const_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\000\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "loss/dense_1_loss/Mean_1"
op: "Mean"
input: "loss/dense_1_loss/mul"
input: "loss/dense_1_loss/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "loss/dense_1_loss/mul_3/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.1
}
}
}
}
node {
name: "loss/dense_1_loss/mul_3"
op: "Mul"
input: "loss/dense_1_loss/mul_3/x"
input: "loss/dense_1_loss/Mean_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/add_4"
op: "Add"
input: "loss/dense_1_loss/mul_2"
input: "loss/dense_1_loss/mul_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Mean_2/reduction_indices"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "loss/dense_1_loss/Mean_2"
op: "Mean"
input: "loss/dense_1_loss/add_4"
input: "loss/dense_1_loss/Mean_2/reduction_indices"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "loss/dense_1_loss/mul_4"
op: "Mul"
input: "loss/dense_1_loss/Mean_2"
input: "dense_1_sample_weights"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/NotEqual/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "loss/dense_1_loss/NotEqual"
op: "NotEqual"
input: "dense_1_sample_weights"
input: "loss/dense_1_loss/NotEqual/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Cast"
op: "Cast"
input: "loss/dense_1_loss/NotEqual"
attr {
key: "DstT"
value {
type: DT_FLOAT
}
}
attr {
key: "SrcT"
value {
type: DT_BOOL
}
}
attr {
key: "Truncate"
value {
b: false
}
}
}
node {
name: "loss/dense_1_loss/Const_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "loss/dense_1_loss/Mean_3"
op: "Mean"
input: "loss/dense_1_loss/Cast"
input: "loss/dense_1_loss/Const_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "loss/dense_1_loss/truediv"
op: "RealDiv"
input: "loss/dense_1_loss/mul_4"
input: "loss/dense_1_loss/Mean_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "loss/dense_1_loss/Const_3"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "loss/dense_1_loss/Mean_4"
op: "Mean"
input: "loss/dense_1_loss/truediv"
input: "loss/dense_1_loss/Const_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "loss/mul/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "loss/mul"
op: "Mul"
input: "loss/mul/x"
input: "loss/dense_1_loss/Mean_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "metrics/acc/Round"
op: "Round"
input: "dense_1/Sigmoid"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "metrics/acc/Equal"
op: "Equal"
input: "dense_1_target"
input: "metrics/acc/Round"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "metrics/acc/Cast"
op: "Cast"
input: "metrics/acc/Equal"
attr {
key: "DstT"
value {
type: DT_FLOAT
}
}
attr {
key: "SrcT"
value {
type: DT_BOOL
}
}
attr {
key: "Truncate"
value {
b: false
}
}
}
node {
name: "metrics/acc/Mean/reduction_indices"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "metrics/acc/Mean"
op: "Mean"
input: "metrics/acc/Cast"
input: "metrics/acc/Mean/reduction_indices"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "metrics/acc/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "metrics/acc/Mean_1"
op: "Mean"
input: "metrics/acc/Mean"
input: "metrics/acc/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/mul"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/grad_ys_0"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/mul"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/gradients/Fill"
op: "Fill"
input: "training/RMSprop/gradients/Shape"
input: "training/RMSprop/gradients/grad_ys_0"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/mul"
}
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/f_count"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/f_count_1"
op: "Enter"
input: "training/RMSprop/gradients/f_count"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/Merge"
op: "Merge"
input: "training/RMSprop/gradients/f_count_1"
input: "training/RMSprop/gradients/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/Switch"
op: "Switch"
input: "training/RMSprop/gradients/Merge"
input: "net/while/LoopCond"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/Add/y"
op: "Const"
input: "^net/while/Identity"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "training/RMSprop/gradients/Add"
op: "Add"
input: "training/RMSprop/gradients/Switch:1"
input: "training/RMSprop/gradients/Add/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/Add"
input: "^training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPushV2_1"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPushV2"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPushV2"
input: "^training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPushV2"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/f_count_2"
op: "Exit"
input: "training/RMSprop/gradients/Switch"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/b_count"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "training/RMSprop/gradients/b_count_1"
op: "Enter"
input: "training/RMSprop/gradients/f_count_2"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/Merge_1"
op: "Merge"
input: "training/RMSprop/gradients/b_count_1"
input: "training/RMSprop/gradients/NextIteration_1"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/GreaterEqual"
op: "GreaterEqual"
input: "training/RMSprop/gradients/Merge_1"
input: "training/RMSprop/gradients/GreaterEqual/Enter"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/GreaterEqual/Enter"
op: "Enter"
input: "training/RMSprop/gradients/b_count"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/b_count_2"
op: "LoopCond"
input: "training/RMSprop/gradients/GreaterEqual"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/Switch_1"
op: "Switch"
input: "training/RMSprop/gradients/Merge_1"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/Sub"
op: "Sub"
input: "training/RMSprop/gradients/Switch_1:1"
input: "training/RMSprop/gradients/GreaterEqual/Enter"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/NextIteration_1"
op: "NextIteration"
input: "training/RMSprop/gradients/Sub"
input: "^training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/b_sync"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/b_count_3"
op: "Exit"
input: "training/RMSprop/gradients/Switch_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/mul_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/Fill"
input: "loss/dense_1_loss/Mean_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/mul_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/Fill"
input: "loss/mul/x"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Reshape/shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 1
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/mul_grad/Mul_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Reshape/shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/truediv"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Tile"
op: "Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tmultiples"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape_1"
op: "Shape"
input: "loss/dense_1_loss/truediv"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape_2"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Prod"
op: "Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Const"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Prod_1"
op: "Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape_2"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Const_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Maximum/y"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Maximum"
op: "Maximum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Prod_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Maximum/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/floordiv"
op: "FloorDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Maximum"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Cast"
op: "Cast"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/floordiv"
attr {
key: "DstT"
value {
type: DT_FLOAT
}
}
attr {
key: "SrcT"
value {
type: DT_INT32
}
}
attr {
key: "Truncate"
value {
b: false
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/truediv"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Cast"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/mul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/truediv"
input: "loss/dense_1_loss/Mean_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Neg"
op: "Neg"
input: "loss/dense_1_loss/mul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv_1"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Neg"
input: "loss/dense_1_loss/Mean_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv_2"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv_1"
input: "loss/dense_1_loss/Mean_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/truediv"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/truediv"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape_1"
op: "Shape"
input: "dense_1_sample_weights"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Reshape"
input: "dense_1_sample_weights"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Mul_1"
op: "Mul"
input: "loss/dense_1_loss/Mean_2"
input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Mul_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Reshape/shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Reshape/shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Tile"
op: "Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tmultiples"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_2_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv"
input: "loss/dense_1_loss/Mean"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_2_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv"
input: "loss/dense_1_loss/mul_2/x"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_3_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv"
input: "loss/dense_1_loss/Mean_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_3_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv"
input: "loss/dense_1_loss/mul_3/x"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Reshape/shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_2_grad/Mul_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Reshape/shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/mul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Tile"
op: "Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tmultiples"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape_1"
op: "Shape"
input: "loss/dense_1_loss/mul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape_2"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Prod"
op: "Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Const"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Prod_1"
op: "Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape_2"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Const_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Maximum/y"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Maximum"
op: "Maximum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Prod_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Maximum/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/floordiv"
op: "FloorDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Maximum"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Cast"
op: "Cast"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/floordiv"
attr {
key: "DstT"
value {
type: DT_FLOAT
}
}
attr {
key: "SrcT"
value {
type: DT_INT32
}
}
attr {
key: "Truncate"
value {
b: false
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/truediv"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Cast"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Reshape/shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\001\000\000\000\001\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_3_grad/Mul_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Reshape/shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/mul"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Tile"
op: "Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tmultiples"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape_1"
op: "Shape"
input: "loss/dense_1_loss/mul"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape_2"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Prod"
op: "Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Const"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 0
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Prod_1"
op: "Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape_2"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Const_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Maximum/y"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 1
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Maximum"
op: "Maximum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Prod_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Maximum/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/floordiv"
op: "FloorDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Prod"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Maximum"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Cast"
op: "Cast"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/floordiv"
attr {
key: "DstT"
value {
type: DT_FLOAT
}
}
attr {
key: "SrcT"
value {
type: DT_INT32
}
}
attr {
key: "Truncate"
value {
b: false
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/truediv"
op: "RealDiv"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Tile"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Cast"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Mean_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/Neg_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape_1"
op: "Shape"
input: "loss/dense_1_loss/Log_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/truediv"
input: "loss/dense_1_loss/Log_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Mul_1"
op: "Mul"
input: "loss/dense_1_loss/Neg_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/truediv"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Mul_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/Neg"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape_1"
op: "Shape"
input: "loss/dense_1_loss/Log"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/truediv"
input: "loss/dense_1_loss/Log"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Mul_1"
op: "Mul"
input: "loss/dense_1_loss/Neg"
input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/truediv"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Mul_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/mul"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/Reciprocal"
op: "Reciprocal"
input: "loss/dense_1_loss/add_3"
input: "^training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Reshape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Log_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Reshape_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/Reciprocal"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Log_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/Reciprocal"
op: "Reciprocal"
input: "loss/dense_1_loss/add_2"
input: "^training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Reshape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Log"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/mul"
op: "Mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Reshape_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/Reciprocal"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/Log"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/sub_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape"
op: "Shape"
input: "loss/dense_1_loss/add_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/mul"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape_1"
op: "Shape"
input: "dense_1/Sigmoid"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Neg"
op: "Neg"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Sum_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Neg"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape_1"
op: "Shape"
input: "dense_1/Sigmoid"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Sum_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/add_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/AddN"
op: "AddN"
input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Reshape_1"
input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Reshape_1"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@loss/dense_1_loss/sub_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/dense_1/Sigmoid_grad/SigmoidGrad"
op: "SigmoidGrad"
input: "dense_1/Sigmoid"
input: "training/RMSprop/gradients/AddN"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/Sigmoid"
}
}
}
}
node {
name: "training/RMSprop/gradients/dense_1/BiasAdd_grad/BiasAddGrad"
op: "BiasAddGrad"
input: "training/RMSprop/gradients/dense_1/Sigmoid_grad/SigmoidGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/BiasAdd"
}
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/dense_1/Sigmoid_grad/SigmoidGrad"
input: "dense_1/kernel/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/MatMul"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul_1"
op: "MatMul"
input: "net/TensorArrayReadV3"
input: "training/RMSprop/gradients/dense_1/Sigmoid_grad/SigmoidGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/MatMul"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/TensorArrayGradV3"
op: "TensorArrayGradV3"
input: "net/TensorArray"
input: "net/while/Exit_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
s: "loc:@net/TensorArrayReadV3"
}
}
}
attr {
key: "source"
value {
s: "training/RMSprop/gradients"
}
}
}
node {
name: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/gradient_flow"
op: "Identity"
input: "net/while/Exit_1"
input: "^training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/TensorArrayGradV3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArray"
s: "loc:@net/TensorArrayReadV3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayWrite/TensorArrayWriteV3"
op: "TensorArrayWriteV3"
input: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/TensorArrayGradV3"
input: "net/sub_1"
input: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul"
input: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/gradient_flow"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/TensorArrayReadV3"
}
}
}
}
node {
name: "training/RMSprop/gradients/zeros_like"
op: "ZerosLike"
input: "net/while/Exit_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Exit_1_grad/b_exit"
op: "Enter"
input: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayWrite/TensorArrayWriteV3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Exit_2_grad/b_exit"
op: "Enter"
input: "training/RMSprop/gradients/zeros_like"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Exit_2"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Switch_1_grad/b_switch"
op: "Merge"
input: "training/RMSprop/gradients/net/while/Exit_1_grad/b_exit"
input: "training/RMSprop/gradients/net/while/Switch_1_grad_1/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Switch_2_grad/b_switch"
op: "Merge"
input: "training/RMSprop/gradients/net/while/Exit_2_grad/b_exit"
input: "training/RMSprop/gradients/net/while/Switch_2_grad_1/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/Switch_1_grad/b_switch"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Merge_2_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/Switch_2_grad/b_switch"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Enter_1_grad/Exit"
op: "Exit"
input: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Enter_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Enter_2_grad/Exit"
op: "Exit"
input: "training/RMSprop/gradients/net/while/Merge_2_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Enter_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3"
op: "TensorArrayGradV3"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3/Enter"
input: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch:1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "source"
value {
s: "training/RMSprop/gradients"
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3/Enter"
op: "Enter"
input: "net/TensorArray"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/gradient_flow"
op: "Identity"
input: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch:1"
input: "^training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3"
op: "TensorArrayReadV3"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/gradient_flow"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Identity"
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Identity"
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/Enter"
input: "net/while/Identity"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/b_sync"
op: "ControlTrigger"
input: "^training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2"
input: "^training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2"
input: "^training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/AddN_1"
op: "AddN"
input: "training/RMSprop/gradients/net/while/Merge_2_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/Shape"
op: "Shape"
input: "net/while/mul_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/Shape_1"
op: "Shape"
input: "net/while/mul_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/add_5_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/add_5_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/AddN_1"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_5_grad/Sum"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/AddN_1"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_5_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_5_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Shape"
op: "Shape"
input: "net/while/clip_by_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Shape_1"
op: "Shape"
input: "net/while/Identity_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/net/while/add_5_grad/Reshape"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Identity_2"
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Identity_2"
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/Enter"
input: "net/while/Identity_2"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Sum"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/Enter"
input: "net/while/clip_by_value"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_6_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Shape"
op: "Shape"
input: "net/while/sub"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Shape_1"
op: "Shape"
input: "net/while/add_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/net/while/add_5_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/Enter"
input: "net/while/add_4"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_5_grad/Reshape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
s: "loc:@net/while/sub"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
s: "loc:@net/while/sub"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/Enter"
input: "net/while/sub"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_7"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Switch_1_grad_1/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Shape"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Shape_1"
op: "Shape"
input: "net/while/clip_by_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/sub_grad/Shape"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/sub_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/sub_grad/Sum"
input: "training/RMSprop/gradients/net/while/sub_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Neg"
op: "Neg"
input: "training/RMSprop/gradients/net/while/sub_grad/Sum_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/sub_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/sub_grad/Neg"
input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/sub"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/Shape"
op: "Shape"
input: "net/while/BiasAdd_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/Shape_1"
op: "Shape"
input: "net/while/MatMul_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/add_4_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/add_4_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_4_grad/Sum"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_4_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_4_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/AddN_2"
op: "AddN"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Reshape"
input: "training/RMSprop/gradients/net/while/sub_grad/Reshape_1"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape"
op: "Shape"
input: "net/while/clip_by_value/Minimum"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_2"
op: "Shape"
input: "training/RMSprop/gradients/AddN_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros/Const"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros"
op: "Fill"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual"
op: "GreaterEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Enter"
input: "net/while/clip_by_value/Minimum"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Const_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Select"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual"
input: "training/RMSprop/gradients/AddN_2"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Select_1"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros"
input: "training/RMSprop/gradients/AddN_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Select_1"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2_grad/BiasAddGrad"
op: "BiasAddGrad"
input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2"
}
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul/Enter"
op: "Enter"
input: "net/strided_slice_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/Enter"
input: "net/while/mul_5"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape"
op: "Shape"
input: "net/while/add_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_2"
op: "Shape"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros/Const"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros"
op: "Fill"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual"
op: "LessEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Enter"
input: "net/while/add_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Const_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Select"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Select_1"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros"
input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Select"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Select_1"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul/Enter"
op: "Enter"
input: "net/strided_slice_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
s: "loc:@net/while/mul_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
s: "loc:@net/while/mul_2"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/Enter"
input: "net/while/mul_2"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/BiasAdd_2_grad/BiasAddGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Shape"
op: "Shape"
input: "net/while/clip_by_value_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Shape_1"
op: "Shape"
input: "net/while/Identity_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Sum"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/Enter"
input: "net/while/clip_by_value_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_5/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/Shape"
op: "Shape"
input: "net/while/mul_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/Shape_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/add_1_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Reshape"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_1_grad/Sum"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Reshape"
input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_1_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_1_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/add_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 13
}
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_2/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_8_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_8"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 60
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_8_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_8_grad/Shape"
input: "net/strided_slice_8/stack"
input: "net/strided_slice_8/stack_1"
input: "net/strided_slice_8/stack_2"
input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_8"
}
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape"
op: "Shape"
input: "net/while/clip_by_value_1/Minimum"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_2"
op: "Shape"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros/Const"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros"
op: "Fill"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual"
op: "GreaterEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Enter"
input: "net/while/clip_by_value_1/Minimum"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Const_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Select"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Select_1"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Select_1"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_5_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_5"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\024\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_5_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_5_grad/Shape"
input: "net/strided_slice_5/stack"
input: "net/strided_slice_5/stack_1"
input: "net/strided_slice_5/stack_2"
input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_5"
}
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 3
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Shape"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Shape_1"
op: "Shape"
input: "net/while/add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Shape"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/net/while/add_1_grad/Reshape"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/Enter"
input: "net/while/add"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Sum"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul_1/Const"
input: "training/RMSprop/gradients/net/while/add_1_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul_1/Const"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul_1"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_3_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_4_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\r\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_4_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_4_grad/Shape"
input: "net/strided_slice_4/stack"
input: "net/strided_slice_4/stack_1"
input: "net/strided_slice_4/stack_2"
input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_4"
}
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 3
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape"
op: "Shape"
input: "net/while/add_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_2"
op: "Shape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros/Const"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros"
op: "Fill"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual"
op: "LessEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Enter"
input: "net/while/add_3"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Const_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Select"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Select_1"
op: "Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros"
input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Select"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Select_1"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/clip_by_value_1/Minimum"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/Shape"
op: "Shape"
input: "net/while/BiasAdd"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/Shape_1"
op: "Shape"
input: "net/while/MatMul_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/add_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/add_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_grad/Sum"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_3_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/Shape"
op: "Shape"
input: "net/while/mul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/Shape_1"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_3_grad/Shape_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/add_3_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Reshape"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_3_grad/Sum"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Reshape"
input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_3_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_3_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/add_3_grad/Shape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_3"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_grad/BiasAddGrad"
op: "BiasAddGrad"
input: "training/RMSprop/gradients/net/while/add_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd"
}
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/add_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul/Enter"
op: "Enter"
input: "net/strided_slice_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul_1"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_grad/Reshape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Shape"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
}
}
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Shape_1"
op: "Shape"
input: "net/while/add_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Shape"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul"
op: "Mul"
input: "training/RMSprop/gradients/net/while/add_3_grad/Reshape"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/Enter"
input: "net/while/add_2"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Sum"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Shape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul_1"
op: "Mul"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul_1/Const"
input: "training/RMSprop/gradients/net/while/add_3_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul_1/Const"
op: "Const"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.2
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul_1"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/mul_4_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_4"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/add_grad/Reshape"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul/Enter"
op: "Enter"
input: "net/strided_slice"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
s: "loc:@net/while/mul"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
s: "loc:@net/while/mul"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/Enter"
input: "net/while/mul"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/BiasAdd_grad/BiasAddGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_3/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/Shape"
op: "Shape"
input: "net/while/BiasAdd_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/Shape_1"
op: "Shape"
input: "net/while/MatMul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "out_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs"
op: "BroadcastGradientArgs"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Enter"
input: "training/RMSprop/gradients/net/while/add_2_grad/Shape"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Const_1"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc_1"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Const_1"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Enter_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPushV2_1"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Enter_1"
input: "training/RMSprop/gradients/net/while/add_2_grad/Shape_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "elem_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc_1"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/Sum"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/Reshape"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_2_grad/Sum"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/Sum_1"
op: "Sum"
input: "training/RMSprop/gradients/net/while/mul_4_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs:1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tidx"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
attr {
key: "keep_dims"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/add_2_grad/Reshape_1"
op: "Reshape"
input: "training/RMSprop/gradients/net/while/add_2_grad/Sum_1"
input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "Tshape"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/add_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 13
}
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_6_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_6"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 60
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_6_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_6_grad/Shape"
input: "net/strided_slice_6/stack"
input: "net/strided_slice_6/stack_1"
input: "net/strided_slice_6/stack_2"
input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_6"
}
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_1_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\024\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_1_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_1_grad/Shape"
input: "net/strided_slice_1/stack"
input: "net/strided_slice_1/stack_1"
input: "net/strided_slice_1/stack_2"
input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_1"
}
}
}
attr {
key: "begin_mask"
value {
i: 3
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1_grad/BiasAddGrad"
op: "BiasAddGrad"
input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1"
}
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul/Enter"
op: "Enter"
input: "net/strided_slice_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul_1"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\r\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_grad/Shape"
input: "net/strided_slice/stack"
input: "net/strided_slice/stack_1"
input: "net/strided_slice/stack_2"
input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice"
}
}
}
attr {
key: "begin_mask"
value {
i: 3
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul/Enter"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul/Enter"
op: "Enter"
input: "net/strided_slice_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1"
op: "MatMul"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2"
input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "transpose_a"
value {
b: true
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/Const"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
s: "loc:@net/while/mul_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: -1
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/f_acc"
op: "StackV2"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
s: "loc:@net/while/mul_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
attr {
key: "stack_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "frame_name"
value {
s: "net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPushV2"
op: "StackPushV2"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/Enter"
input: "net/while/mul_1"
input: "^training/RMSprop/gradients/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "swap_memory"
value {
b: true
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2"
op: "StackPopV2"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2/Enter"
input: "^training/RMSprop/gradients/Sub"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "elem_type"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2/Enter"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/f_acc"
attr {
key: "T"
value {
type: DT_RESOURCE
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: true
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/BiasAdd_1_grad/BiasAddGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/BiasAdd_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/AddN_3"
op: "AddN"
input: "training/RMSprop/gradients/net/while/mul_6_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape_1"
input: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul"
input: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul"
attr {
key: "N"
value {
i: 4
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/mul_6"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_4/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 13
}
dim {
size: 20
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_1"
op: "Enter"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
attr {
key: "frame_name"
value {
s: "training/RMSprop/gradients/net/while/while_context"
}
}
attr {
key: "is_constant"
value {
b: false
}
}
attr {
key: "parallel_iterations"
value {
i: 32
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_2"
op: "Merge"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_1"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/NextIteration"
attr {
key: "N"
value {
i: 2
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Switch"
op: "Switch"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_2"
input: "training/RMSprop/gradients/b_count_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Add"
op: "Add"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Switch:1"
input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_3"
op: "Exit"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Switch"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/MatMul_1/Enter"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_7_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_7"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 1
}
}
int_val: 60
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_7_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_7_grad/Shape"
input: "net/strided_slice_7/stack"
input: "net/strided_slice_7/stack_1"
input: "net/strided_slice_7/stack_2"
input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_7"
}
}
}
attr {
key: "begin_mask"
value {
i: 0
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 0
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/while/Switch_2_grad_1/NextIteration"
op: "NextIteration"
input: "training/RMSprop/gradients/AddN_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/while/Merge_2"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_3_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\024\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_3_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_3_grad/Shape"
input: "net/strided_slice_3/stack"
input: "net/strided_slice_3/stack_1"
input: "net/strided_slice_3/stack_2"
input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_3"
}
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_2_grad/Shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\r\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/gradients/net/strided_slice_2_grad/StridedSliceGrad"
op: "StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_2_grad/Shape"
input: "net/strided_slice_2/stack"
input: "net/strided_slice_2/stack_1"
input: "net/strided_slice_2/stack_2"
input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_3"
attr {
key: "Index"
value {
type: DT_INT32
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_2"
}
}
}
attr {
key: "begin_mask"
value {
i: 1
}
}
attr {
key: "ellipsis_mask"
value {
i: 0
}
}
attr {
key: "end_mask"
value {
i: 1
}
}
attr {
key: "new_axis_mask"
value {
i: 0
}
}
attr {
key: "shrink_axis_mask"
value {
i: 0
}
}
}
node {
name: "training/RMSprop/gradients/AddN_4"
op: "AddN"
input: "training/RMSprop/gradients/net/strided_slice_8_grad/StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_6_grad/StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_7_grad/StridedSliceGrad"
attr {
key: "N"
value {
i: 3
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_8"
}
}
}
}
node {
name: "training/RMSprop/gradients/AddN_5"
op: "AddN"
input: "training/RMSprop/gradients/net/strided_slice_5_grad/StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_1_grad/StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_3_grad/StridedSliceGrad"
attr {
key: "N"
value {
i: 3
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_5"
}
}
}
}
node {
name: "training/RMSprop/gradients/AddN_6"
op: "AddN"
input: "training/RMSprop/gradients/net/strided_slice_4_grad/StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_grad/StridedSliceGrad"
input: "training/RMSprop/gradients/net/strided_slice_2_grad/StridedSliceGrad"
attr {
key: "N"
value {
i: 3
}
}
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/strided_slice_4"
}
}
}
}
node {
name: "training/RMSprop/zeros"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 13
}
dim {
size: 60
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Variable"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 13
}
dim {
size: 60
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/Variable/Assign"
op: "Assign"
input: "training/RMSprop/Variable"
input: "training/RMSprop/zeros"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/Variable/read"
op: "Identity"
input: "training/RMSprop/Variable"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable"
}
}
}
}
node {
name: "training/RMSprop/zeros_1/shape_as_tensor"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\024\000\000\000<\000\000\000"
}
}
}
}
node {
name: "training/RMSprop/zeros_1/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/zeros_1"
op: "Fill"
input: "training/RMSprop/zeros_1/shape_as_tensor"
input: "training/RMSprop/zeros_1/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "index_type"
value {
type: DT_INT32
}
}
}
node {
name: "training/RMSprop/Variable_1"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 60
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/Variable_1/Assign"
op: "Assign"
input: "training/RMSprop/Variable_1"
input: "training/RMSprop/zeros_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_1"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/Variable_1/read"
op: "Identity"
input: "training/RMSprop/Variable_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_1"
}
}
}
}
node {
name: "training/RMSprop/zeros_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 60
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Variable_2"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 60
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/Variable_2/Assign"
op: "Assign"
input: "training/RMSprop/Variable_2"
input: "training/RMSprop/zeros_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_2"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/Variable_2/read"
op: "Identity"
input: "training/RMSprop/Variable_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_2"
}
}
}
}
node {
name: "training/RMSprop/zeros_3"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 20
}
dim {
size: 1
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Variable_3"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 1
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/Variable_3/Assign"
op: "Assign"
input: "training/RMSprop/Variable_3"
input: "training/RMSprop/zeros_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_3"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/Variable_3/read"
op: "Identity"
input: "training/RMSprop/Variable_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_3"
}
}
}
}
node {
name: "training/RMSprop/zeros_4"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 1
}
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Variable_4"
op: "VariableV2"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 1
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "training/RMSprop/Variable_4/Assign"
op: "Assign"
input: "training/RMSprop/Variable_4"
input: "training/RMSprop/zeros_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_4"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/Variable_4/read"
op: "Identity"
input: "training/RMSprop/Variable_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_4"
}
}
}
}
node {
name: "training/RMSprop/AssignAdd/value"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT64
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT64
tensor_shape {
}
int64_val: 1
}
}
}
}
node {
name: "training/RMSprop/AssignAdd"
op: "AssignAdd"
input: "RMSprop/iterations"
input: "training/RMSprop/AssignAdd/value"
attr {
key: "T"
value {
type: DT_INT64
}
}
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/iterations"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
}
node {
name: "training/RMSprop/mul"
op: "Mul"
input: "RMSprop/rho/read"
input: "training/RMSprop/Variable/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/sub"
op: "Sub"
input: "training/RMSprop/sub/x"
input: "RMSprop/rho/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Square"
op: "Square"
input: "training/RMSprop/gradients/AddN_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/mul_1"
op: "Mul"
input: "training/RMSprop/sub"
input: "training/RMSprop/Square"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add"
op: "Add"
input: "training/RMSprop/mul"
input: "training/RMSprop/mul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign"
op: "Assign"
input: "training/RMSprop/Variable"
input: "training/RMSprop/add"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_2"
op: "Mul"
input: "RMSprop/lr/read"
input: "training/RMSprop/gradients/AddN_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Const_1"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: inf
}
}
}
}
node {
name: "training/RMSprop/clip_by_value/Minimum"
op: "Minimum"
input: "training/RMSprop/add"
input: "training/RMSprop/Const_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/clip_by_value"
op: "Maximum"
input: "training/RMSprop/clip_by_value/Minimum"
input: "training/RMSprop/Const"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Sqrt"
op: "Sqrt"
input: "training/RMSprop/clip_by_value"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_1/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "training/RMSprop/add_1"
op: "Add"
input: "training/RMSprop/Sqrt"
input: "training/RMSprop/add_1/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/truediv"
op: "RealDiv"
input: "training/RMSprop/mul_2"
input: "training/RMSprop/add_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_1"
op: "Sub"
input: "net/kernel/read"
input: "training/RMSprop/truediv"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_1"
op: "Assign"
input: "net/kernel"
input: "training/RMSprop/sub_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/kernel"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_3"
op: "Mul"
input: "RMSprop/rho/read"
input: "training/RMSprop/Variable_1/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_2/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/sub_2"
op: "Sub"
input: "training/RMSprop/sub_2/x"
input: "RMSprop/rho/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Square_1"
op: "Square"
input: "training/RMSprop/gradients/AddN_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/mul_4"
op: "Mul"
input: "training/RMSprop/sub_2"
input: "training/RMSprop/Square_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_2"
op: "Add"
input: "training/RMSprop/mul_3"
input: "training/RMSprop/mul_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_2"
op: "Assign"
input: "training/RMSprop/Variable_1"
input: "training/RMSprop/add_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_1"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_5"
op: "Mul"
input: "RMSprop/lr/read"
input: "training/RMSprop/gradients/AddN_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Const_2"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Const_3"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: inf
}
}
}
}
node {
name: "training/RMSprop/clip_by_value_1/Minimum"
op: "Minimum"
input: "training/RMSprop/add_2"
input: "training/RMSprop/Const_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/clip_by_value_1"
op: "Maximum"
input: "training/RMSprop/clip_by_value_1/Minimum"
input: "training/RMSprop/Const_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Sqrt_1"
op: "Sqrt"
input: "training/RMSprop/clip_by_value_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_3/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "training/RMSprop/add_3"
op: "Add"
input: "training/RMSprop/Sqrt_1"
input: "training/RMSprop/add_3/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/truediv_1"
op: "RealDiv"
input: "training/RMSprop/mul_5"
input: "training/RMSprop/add_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_3"
op: "Sub"
input: "net/recurrent_kernel/read"
input: "training/RMSprop/truediv_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_3"
op: "Assign"
input: "net/recurrent_kernel"
input: "training/RMSprop/sub_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/recurrent_kernel"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_6"
op: "Mul"
input: "RMSprop/rho/read"
input: "training/RMSprop/Variable_2/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_4/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/sub_4"
op: "Sub"
input: "training/RMSprop/sub_4/x"
input: "RMSprop/rho/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Square_2"
op: "Square"
input: "training/RMSprop/gradients/AddN_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/mul_7"
op: "Mul"
input: "training/RMSprop/sub_4"
input: "training/RMSprop/Square_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_4"
op: "Add"
input: "training/RMSprop/mul_6"
input: "training/RMSprop/mul_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_4"
op: "Assign"
input: "training/RMSprop/Variable_2"
input: "training/RMSprop/add_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_2"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_8"
op: "Mul"
input: "RMSprop/lr/read"
input: "training/RMSprop/gradients/AddN_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Const_4"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Const_5"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: inf
}
}
}
}
node {
name: "training/RMSprop/clip_by_value_2/Minimum"
op: "Minimum"
input: "training/RMSprop/add_4"
input: "training/RMSprop/Const_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/clip_by_value_2"
op: "Maximum"
input: "training/RMSprop/clip_by_value_2/Minimum"
input: "training/RMSprop/Const_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Sqrt_2"
op: "Sqrt"
input: "training/RMSprop/clip_by_value_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_5/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "training/RMSprop/add_5"
op: "Add"
input: "training/RMSprop/Sqrt_2"
input: "training/RMSprop/add_5/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/truediv_2"
op: "RealDiv"
input: "training/RMSprop/mul_8"
input: "training/RMSprop/add_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_5"
op: "Sub"
input: "net/bias/read"
input: "training/RMSprop/truediv_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_5"
op: "Assign"
input: "net/bias"
input: "training/RMSprop/sub_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@net/bias"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_9"
op: "Mul"
input: "RMSprop/rho/read"
input: "training/RMSprop/Variable_3/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_6/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/sub_6"
op: "Sub"
input: "training/RMSprop/sub_6/x"
input: "RMSprop/rho/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Square_3"
op: "Square"
input: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/mul_10"
op: "Mul"
input: "training/RMSprop/sub_6"
input: "training/RMSprop/Square_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_6"
op: "Add"
input: "training/RMSprop/mul_9"
input: "training/RMSprop/mul_10"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_6"
op: "Assign"
input: "training/RMSprop/Variable_3"
input: "training/RMSprop/add_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_3"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_11"
op: "Mul"
input: "RMSprop/lr/read"
input: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul_1"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Const_6"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Const_7"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: inf
}
}
}
}
node {
name: "training/RMSprop/clip_by_value_3/Minimum"
op: "Minimum"
input: "training/RMSprop/add_6"
input: "training/RMSprop/Const_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/clip_by_value_3"
op: "Maximum"
input: "training/RMSprop/clip_by_value_3/Minimum"
input: "training/RMSprop/Const_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Sqrt_3"
op: "Sqrt"
input: "training/RMSprop/clip_by_value_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_7/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "training/RMSprop/add_7"
op: "Add"
input: "training/RMSprop/Sqrt_3"
input: "training/RMSprop/add_7/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/truediv_3"
op: "RealDiv"
input: "training/RMSprop/mul_11"
input: "training/RMSprop/add_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_7"
op: "Sub"
input: "dense_1/kernel/read"
input: "training/RMSprop/truediv_3"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_7"
op: "Assign"
input: "dense_1/kernel"
input: "training/RMSprop/sub_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/kernel"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_12"
op: "Mul"
input: "RMSprop/rho/read"
input: "training/RMSprop/Variable_4/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_8/x"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "training/RMSprop/sub_8"
op: "Sub"
input: "training/RMSprop/sub_8/x"
input: "RMSprop/rho/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Square_4"
op: "Square"
input: "training/RMSprop/gradients/dense_1/BiasAdd_grad/BiasAddGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/mul_13"
op: "Mul"
input: "training/RMSprop/sub_8"
input: "training/RMSprop/Square_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_8"
op: "Add"
input: "training/RMSprop/mul_12"
input: "training/RMSprop/mul_13"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_8"
op: "Assign"
input: "training/RMSprop/Variable_4"
input: "training/RMSprop/add_8"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_4"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/RMSprop/mul_14"
op: "Mul"
input: "RMSprop/lr/read"
input: "training/RMSprop/gradients/dense_1/BiasAdd_grad/BiasAddGrad"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Const_8"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "training/RMSprop/Const_9"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: inf
}
}
}
}
node {
name: "training/RMSprop/clip_by_value_4/Minimum"
op: "Minimum"
input: "training/RMSprop/add_8"
input: "training/RMSprop/Const_9"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/clip_by_value_4"
op: "Maximum"
input: "training/RMSprop/clip_by_value_4/Minimum"
input: "training/RMSprop/Const_8"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Sqrt_4"
op: "Sqrt"
input: "training/RMSprop/clip_by_value_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/add_9/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1e-07
}
}
}
}
node {
name: "training/RMSprop/add_9"
op: "Add"
input: "training/RMSprop/Sqrt_4"
input: "training/RMSprop/add_9/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/truediv_4"
op: "RealDiv"
input: "training/RMSprop/mul_14"
input: "training/RMSprop/add_9"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/sub_9"
op: "Sub"
input: "dense_1/bias/read"
input: "training/RMSprop/truediv_4"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "training/RMSprop/Assign_9"
op: "Assign"
input: "dense_1/bias"
input: "training/RMSprop/sub_9"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@dense_1/bias"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "training/group_deps"
op: "NoOp"
input: "^loss/mul"
input: "^metrics/acc/Mean_1"
input: "^training/RMSprop/Assign"
input: "^training/RMSprop/AssignAdd"
input: "^training/RMSprop/Assign_1"
input: "^training/RMSprop/Assign_2"
input: "^training/RMSprop/Assign_3"
input: "^training/RMSprop/Assign_4"
input: "^training/RMSprop/Assign_5"
input: "^training/RMSprop/Assign_6"
input: "^training/RMSprop/Assign_7"
input: "^training/RMSprop/Assign_8"
input: "^training/RMSprop/Assign_9"
}
node {
name: "IsVariableInitialized_5"
op: "IsVariableInitialized"
input: "RMSprop/lr"
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/lr"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_6"
op: "IsVariableInitialized"
input: "RMSprop/rho"
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/rho"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_7"
op: "IsVariableInitialized"
input: "RMSprop/decay"
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/decay"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_8"
op: "IsVariableInitialized"
input: "RMSprop/iterations"
attr {
key: "_class"
value {
list {
s: "loc:@RMSprop/iterations"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT64
}
}
}
node {
name: "IsVariableInitialized_9"
op: "IsVariableInitialized"
input: "training/RMSprop/Variable"
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_10"
op: "IsVariableInitialized"
input: "training/RMSprop/Variable_1"
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_1"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_11"
op: "IsVariableInitialized"
input: "training/RMSprop/Variable_2"
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_2"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_12"
op: "IsVariableInitialized"
input: "training/RMSprop/Variable_3"
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_3"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "IsVariableInitialized_13"
op: "IsVariableInitialized"
input: "training/RMSprop/Variable_4"
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_4"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
}
node {
name: "init_1"
op: "NoOp"
input: "^RMSprop/decay/Assign"
input: "^RMSprop/iterations/Assign"
input: "^RMSprop/lr/Assign"
input: "^RMSprop/rho/Assign"
input: "^training/RMSprop/Variable/Assign"
input: "^training/RMSprop/Variable_1/Assign"
input: "^training/RMSprop/Variable_2/Assign"
input: "^training/RMSprop/Variable_3/Assign"
input: "^training/RMSprop/Variable_4/Assign"
}
node {
name: "Placeholder_5"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 13
}
dim {
size: 60
}
}
}
}
}
node {
name: "Assign_5"
op: "Assign"
input: "training/RMSprop/Variable"
input: "Placeholder_5"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_6"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 60
}
}
}
}
}
node {
name: "Assign_6"
op: "Assign"
input: "training/RMSprop/Variable_1"
input: "Placeholder_6"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_1"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_7"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 60
}
}
}
}
}
node {
name: "Assign_7"
op: "Assign"
input: "training/RMSprop/Variable_2"
input: "Placeholder_7"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_2"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_8"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 20
}
dim {
size: 1
}
}
}
}
}
node {
name: "Assign_8"
op: "Assign"
input: "training/RMSprop/Variable_3"
input: "Placeholder_8"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_3"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "Placeholder_9"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 1
}
}
}
}
}
node {
name: "Assign_9"
op: "Assign"
input: "training/RMSprop/Variable_4"
input: "Placeholder_9"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@training/RMSprop/Variable_4"
}
}
}
attr {
key: "use_locking"
value {
b: false
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "net_output"
op: "Identity"
input: "dense_1/Sigmoid"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
versions {
producer: 27
}